一种高精度脑解剖区域分割的双阶段框架。

IF 2 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Peyman Sharifian, Alireza Karimian, Hossein Arabi
{"title":"一种高精度脑解剖区域分割的双阶段框架。","authors":"Peyman Sharifian, Alireza Karimian, Hossein Arabi","doi":"10.1007/s10334-025-01233-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study presents a novel deep learning-based framework for precise brain MR region segmentation, aiming to identify the location and the shape details of different anatomical structures within the brain.</p><p><strong>Materials and methods: </strong>The approach uses a two-stage 3D segmentation technique on a dataset of adult subjects, including cognitively normal participants and individuals with cognitive decline. Stage 1 employs a 3D U-Net to segment 13 brain regions, achieving a mean DSC of 0.904 ± 0.060 and a mean HD95 of 1.52 ± 1.53 mm (a mean DSC of 0.885 ± 0.065 and a mean HD95 of 1.57 ± 1.35 mm for smaller parts). For challenging regions like hippocampus, thalamus, cerebrospinal fluid, amygdala, basal ganglia, and corpus callosum, Stage 2 with SegResNet refines segmentation, improving mean DSC to 0.921 ± 0.048 and HD95 to 1.17 ± 0.69 mm.</p><p><strong>Results: </strong>Statistical analysis reveals significant improvements (p-value < 0.001) for these regions, with DSC increases ranging from 1.3 to 3.2% and HD95 reductions of 0.06-0.33 mm. Comparisons with recent studies highlight the superior performance of the performed method.</p><p><strong>Discussion: </strong>The inclusion of a second stage for refining the segmentation of smaller regions demonstrates substantial improvements, establishing the framework's potential for precise and reliable brain region segmentation across diverse cognitive groups.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"299-315"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A dual-stage framework for segmentation of the brain anatomical regions with high accuracy.\",\"authors\":\"Peyman Sharifian, Alireza Karimian, Hossein Arabi\",\"doi\":\"10.1007/s10334-025-01233-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>This study presents a novel deep learning-based framework for precise brain MR region segmentation, aiming to identify the location and the shape details of different anatomical structures within the brain.</p><p><strong>Materials and methods: </strong>The approach uses a two-stage 3D segmentation technique on a dataset of adult subjects, including cognitively normal participants and individuals with cognitive decline. Stage 1 employs a 3D U-Net to segment 13 brain regions, achieving a mean DSC of 0.904 ± 0.060 and a mean HD95 of 1.52 ± 1.53 mm (a mean DSC of 0.885 ± 0.065 and a mean HD95 of 1.57 ± 1.35 mm for smaller parts). For challenging regions like hippocampus, thalamus, cerebrospinal fluid, amygdala, basal ganglia, and corpus callosum, Stage 2 with SegResNet refines segmentation, improving mean DSC to 0.921 ± 0.048 and HD95 to 1.17 ± 0.69 mm.</p><p><strong>Results: </strong>Statistical analysis reveals significant improvements (p-value < 0.001) for these regions, with DSC increases ranging from 1.3 to 3.2% and HD95 reductions of 0.06-0.33 mm. Comparisons with recent studies highlight the superior performance of the performed method.</p><p><strong>Discussion: </strong>The inclusion of a second stage for refining the segmentation of smaller regions demonstrates substantial improvements, establishing the framework's potential for precise and reliable brain region segmentation across diverse cognitive groups.</p>\",\"PeriodicalId\":18067,\"journal\":{\"name\":\"Magnetic Resonance Materials in Physics, Biology and Medicine\",\"volume\":\" \",\"pages\":\"299-315\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance Materials in Physics, Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10334-025-01233-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance Materials in Physics, Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10334-025-01233-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:提出一种新的基于深度学习的脑MR区域精确分割框架,旨在识别脑内不同解剖结构的位置和形状细节。材料和方法:该方法在成人受试者数据集上使用两阶段3D分割技术,包括认知正常的参与者和认知衰退的个体。第一阶段使用3D U-Net对13个大脑区域进行分割,平均DSC为0.904±0.060,平均HD95为1.52±1.53 mm(较小部分的平均DSC为0.885±0.065,平均HD95为1.57±1.35 mm)。对于海马、丘脑、脑脊液、杏仁核、基底神经节和胼胝体等具有挑战性的区域,SegResNet的第二阶段改进了分割,将平均DSC提高到0.921±0.048,HD95提高到1.17±0.69 mm。结果:统计分析显示显著改善(p值)包括第二阶段的细化小区域分割显示了实质性的改进,建立了跨不同认知群体的精确和可靠的大脑区域分割框架的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A dual-stage framework for segmentation of the brain anatomical regions with high accuracy.

Objective: This study presents a novel deep learning-based framework for precise brain MR region segmentation, aiming to identify the location and the shape details of different anatomical structures within the brain.

Materials and methods: The approach uses a two-stage 3D segmentation technique on a dataset of adult subjects, including cognitively normal participants and individuals with cognitive decline. Stage 1 employs a 3D U-Net to segment 13 brain regions, achieving a mean DSC of 0.904 ± 0.060 and a mean HD95 of 1.52 ± 1.53 mm (a mean DSC of 0.885 ± 0.065 and a mean HD95 of 1.57 ± 1.35 mm for smaller parts). For challenging regions like hippocampus, thalamus, cerebrospinal fluid, amygdala, basal ganglia, and corpus callosum, Stage 2 with SegResNet refines segmentation, improving mean DSC to 0.921 ± 0.048 and HD95 to 1.17 ± 0.69 mm.

Results: Statistical analysis reveals significant improvements (p-value < 0.001) for these regions, with DSC increases ranging from 1.3 to 3.2% and HD95 reductions of 0.06-0.33 mm. Comparisons with recent studies highlight the superior performance of the performed method.

Discussion: The inclusion of a second stage for refining the segmentation of smaller regions demonstrates substantial improvements, establishing the framework's potential for precise and reliable brain region segmentation across diverse cognitive groups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
58
审稿时长
>12 weeks
期刊介绍: MAGMA is a multidisciplinary international journal devoted to the publication of articles on all aspects of magnetic resonance techniques and their applications in medicine and biology. MAGMA currently publishes research papers, reviews, letters to the editor, and commentaries, six times a year. The subject areas covered by MAGMA include: advances in materials, hardware and software in magnetic resonance technology, new developments and results in research and practical applications of magnetic resonance imaging and spectroscopy related to biology and medicine, study of animal models and intact cells using magnetic resonance, reports of clinical trials on humans and clinical validation of magnetic resonance protocols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信