远程监控算法与家庭无创通气管理的相关性。

IF 4.3 3区 医学 Q1 RESPIRATORY SYSTEM
ERJ Open Research Pub Date : 2025-03-03 eCollection Date: 2025-03-01 DOI:10.1183/23120541.00509-2024
Clara Bianquis, Kinan El Husseini, Léa Razakamanantsoa, Adrien Kerfourn, Emeline Fresnel, Jean-Christian Borel, Antoine Cuvelier, Johan Dupuis, Frédéric Gagnadoux, Capucine Morélot-Panzini, Jesus Gonzalez-Bermejo, Jean-François Muir, Arnaud Prigent, Claudio Rabec, Wojciech Trzepizur, Joao Winck, Patrick Brian Murphy, Maxime Patout
{"title":"远程监控算法与家庭无创通气管理的相关性。","authors":"Clara Bianquis, Kinan El Husseini, Léa Razakamanantsoa, Adrien Kerfourn, Emeline Fresnel, Jean-Christian Borel, Antoine Cuvelier, Johan Dupuis, Frédéric Gagnadoux, Capucine Morélot-Panzini, Jesus Gonzalez-Bermejo, Jean-François Muir, Arnaud Prigent, Claudio Rabec, Wojciech Trzepizur, Joao Winck, Patrick Brian Murphy, Maxime Patout","doi":"10.1183/23120541.00509-2024","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>The increasing number of patients requiring home noninvasive ventilation (HNIV) is a challenge for our healthcare system. Telemonitoring may be used to facilitate the management of HNIV patients. We aimed to assess the ability of telemonitoring algorithms to identify patients not adequately ventilated. Our secondary aim was to assess the consequences related to these algorithms, including costs.</p><p><strong>Methods: </strong>11 HNIV experts each provided an algorithm to identify patients with suboptimal ventilation. Each algorithm was tested using real-life data from a cohort of patients over a 90-day period. Inadequate HNIV was defined as the presence of at least one criterion amongst the following: uncontrolled hypoventilation, daily adherence <4 h·day<sup>-1</sup>, HNIV-related severe side-effect, or a residual event index >10·h<sup>-1</sup>.</p><p><strong>Results: </strong>100 patients were included in the cohort. According to our criteria, HNIV was considered as inadequate in 66 (66%) patients, without difference between underlying respiratory disease. Telemonitoring algorithms correctly classified patients in 65% (52-66) of cases. They had a global sensitivity of 78% (95% CI 37-95%), a specificity of 40% (95% CI 19-78%), a positive predictive value of 72% (95% CI 65-77%) and a negative predictive value of 45% (95% CI 37-51%). Applying telemonitoring algorithms resulted in median (interquartile range) 127 (84-238) alerts across the study population with a median cost increase of EUR 2064 (952-6262).</p><p><strong>Conclusion: </strong>Telemonitoring algorithms have poor diagnostic performances in identifying inadequately ventilated patients. They increase workload for healthcare workers and costs.</p>","PeriodicalId":11739,"journal":{"name":"ERJ Open Research","volume":"11 2","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11874130/pdf/","citationCount":"0","resultStr":"{\"title\":\"Relevance of telemonitoring algorithms for the management of home noninvasive ventilation.\",\"authors\":\"Clara Bianquis, Kinan El Husseini, Léa Razakamanantsoa, Adrien Kerfourn, Emeline Fresnel, Jean-Christian Borel, Antoine Cuvelier, Johan Dupuis, Frédéric Gagnadoux, Capucine Morélot-Panzini, Jesus Gonzalez-Bermejo, Jean-François Muir, Arnaud Prigent, Claudio Rabec, Wojciech Trzepizur, Joao Winck, Patrick Brian Murphy, Maxime Patout\",\"doi\":\"10.1183/23120541.00509-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and objective: </strong>The increasing number of patients requiring home noninvasive ventilation (HNIV) is a challenge for our healthcare system. Telemonitoring may be used to facilitate the management of HNIV patients. We aimed to assess the ability of telemonitoring algorithms to identify patients not adequately ventilated. Our secondary aim was to assess the consequences related to these algorithms, including costs.</p><p><strong>Methods: </strong>11 HNIV experts each provided an algorithm to identify patients with suboptimal ventilation. Each algorithm was tested using real-life data from a cohort of patients over a 90-day period. Inadequate HNIV was defined as the presence of at least one criterion amongst the following: uncontrolled hypoventilation, daily adherence <4 h·day<sup>-1</sup>, HNIV-related severe side-effect, or a residual event index >10·h<sup>-1</sup>.</p><p><strong>Results: </strong>100 patients were included in the cohort. According to our criteria, HNIV was considered as inadequate in 66 (66%) patients, without difference between underlying respiratory disease. Telemonitoring algorithms correctly classified patients in 65% (52-66) of cases. They had a global sensitivity of 78% (95% CI 37-95%), a specificity of 40% (95% CI 19-78%), a positive predictive value of 72% (95% CI 65-77%) and a negative predictive value of 45% (95% CI 37-51%). Applying telemonitoring algorithms resulted in median (interquartile range) 127 (84-238) alerts across the study population with a median cost increase of EUR 2064 (952-6262).</p><p><strong>Conclusion: </strong>Telemonitoring algorithms have poor diagnostic performances in identifying inadequately ventilated patients. They increase workload for healthcare workers and costs.</p>\",\"PeriodicalId\":11739,\"journal\":{\"name\":\"ERJ Open Research\",\"volume\":\"11 2\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11874130/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERJ Open Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1183/23120541.00509-2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"RESPIRATORY SYSTEM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERJ Open Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1183/23120541.00509-2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0

摘要

背景与目的:越来越多的患者需要家庭无创通气(HNIV)对我们的医疗保健系统是一个挑战。远程监护可用于促进对艾滋病毒患者的管理。我们的目的是评估远程监测算法识别通风不充分的患者的能力。我们的第二个目标是评估与这些算法相关的后果,包括成本。方法:11名hiv专家每人提供了一种识别次优通气患者的算法。每个算法都使用来自一组患者的真实数据进行了90天的测试。不充分的hiv被定义为存在以下标准中的至少一个:不受控制的低通气,每日坚持-1,hiv相关的严重副作用,或残留事件指数bbb10·h-1。结果:100例患者被纳入队列。根据我们的标准,66例(66%)患者被认为hiv不足,没有潜在呼吸道疾病的差异。在65%(52-66)的病例中,远程监测算法正确地对患者进行了分类。它们的总体敏感性为78% (95% CI 37-95%),特异性为40% (95% CI 19-78%),阳性预测值为72% (95% CI 65-77%),阴性预测值为45% (95% CI 37-51%)。应用远程监测算法导致整个研究人群中出现127(84-238)次警报,平均成本增加2064欧元(952-6262)。结论:远程监护算法在识别通气不充分患者方面的诊断性能较差。它们增加了卫生保健工作者的工作量和成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relevance of telemonitoring algorithms for the management of home noninvasive ventilation.

Background and objective: The increasing number of patients requiring home noninvasive ventilation (HNIV) is a challenge for our healthcare system. Telemonitoring may be used to facilitate the management of HNIV patients. We aimed to assess the ability of telemonitoring algorithms to identify patients not adequately ventilated. Our secondary aim was to assess the consequences related to these algorithms, including costs.

Methods: 11 HNIV experts each provided an algorithm to identify patients with suboptimal ventilation. Each algorithm was tested using real-life data from a cohort of patients over a 90-day period. Inadequate HNIV was defined as the presence of at least one criterion amongst the following: uncontrolled hypoventilation, daily adherence <4 h·day-1, HNIV-related severe side-effect, or a residual event index >10·h-1.

Results: 100 patients were included in the cohort. According to our criteria, HNIV was considered as inadequate in 66 (66%) patients, without difference between underlying respiratory disease. Telemonitoring algorithms correctly classified patients in 65% (52-66) of cases. They had a global sensitivity of 78% (95% CI 37-95%), a specificity of 40% (95% CI 19-78%), a positive predictive value of 72% (95% CI 65-77%) and a negative predictive value of 45% (95% CI 37-51%). Applying telemonitoring algorithms resulted in median (interquartile range) 127 (84-238) alerts across the study population with a median cost increase of EUR 2064 (952-6262).

Conclusion: Telemonitoring algorithms have poor diagnostic performances in identifying inadequately ventilated patients. They increase workload for healthcare workers and costs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ERJ Open Research
ERJ Open Research Medicine-Pulmonary and Respiratory Medicine
CiteScore
6.20
自引率
4.30%
发文量
273
审稿时长
8 weeks
期刊介绍: ERJ Open Research is a fully open access original research journal, published online by the European Respiratory Society. The journal aims to publish high-quality work in all fields of respiratory science and medicine, covering basic science, clinical translational science and clinical medicine. The journal was created to help fulfil the ERS objective to disseminate scientific and educational material to its members and to the medical community, but also to provide researchers with an affordable open access specialty journal in which to publish their work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信