Haixin Li, Xuemin Cai, Changfen Xu, Xinhui Yang, Xiaohan Song, Yuxin Kong, Mei Yang, Qielan Wu, Song Guo Zheng, Yiming Shao, Ping Wang, Jing Zhou, Hua-Bing Li
{"title":"RNA胞苷乙酰转移酶NAT10在炎症性肠病中维持T细胞致病性。","authors":"Haixin Li, Xuemin Cai, Changfen Xu, Xinhui Yang, Xiaohan Song, Yuxin Kong, Mei Yang, Qielan Wu, Song Guo Zheng, Yiming Shao, Ping Wang, Jing Zhou, Hua-Bing Li","doi":"10.1038/s41421-025-00781-5","DOIUrl":null,"url":null,"abstract":"<p><p>The emerging field of epitranscriptomics is reshaping our understanding of post-transcriptional gene regulation in inflammatory diseases. N<sup>4</sup>-acetylcytidine (ac<sup>4</sup>C), the only known acetylation modification in RNA catalyzed by N-acetyltransferase 10 (NAT10), is known to enhance mRNA stability and translation, yet its role in inflammatory bowel disease (IBD) remains unclear. In this study, we discovered that Nat10 expression correlates with inflammatory and apoptotic pathways in human ulcerative colitis CD4<sup>+</sup> T cells. Our further analysis revealed that the deficiency of NAT10 led to a disruption of T cell development at steady state, and identified a pivotal role for NAT10 in preserving the pathogenicity of naïve CD4<sup>+</sup> T cells to induce adoptive transfer colitis. Mechanistically, the lack of NAT10 triggers the diminished stability of the anti-apoptotic gene BCL2-associated athanogene 3 (Bag3), initiating a cascade of events that includes the upregulation of apoptosis-related genes and an accelerated rate of apoptosis in T cells. Our findings reveal a previously unrecognized role of the NAT10-ac<sup>4</sup>C-Bag3 axis in preserving T cell balance and suggests that targeting RNA ac<sup>4</sup>C modification could be a promising therapeutic approach for IBD.</p>","PeriodicalId":9674,"journal":{"name":"Cell Discovery","volume":"11 1","pages":"19"},"PeriodicalIF":13.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11880361/pdf/","citationCount":"0","resultStr":"{\"title\":\"RNA cytidine acetyltransferase NAT10 maintains T cell pathogenicity in inflammatory bowel disease.\",\"authors\":\"Haixin Li, Xuemin Cai, Changfen Xu, Xinhui Yang, Xiaohan Song, Yuxin Kong, Mei Yang, Qielan Wu, Song Guo Zheng, Yiming Shao, Ping Wang, Jing Zhou, Hua-Bing Li\",\"doi\":\"10.1038/s41421-025-00781-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The emerging field of epitranscriptomics is reshaping our understanding of post-transcriptional gene regulation in inflammatory diseases. N<sup>4</sup>-acetylcytidine (ac<sup>4</sup>C), the only known acetylation modification in RNA catalyzed by N-acetyltransferase 10 (NAT10), is known to enhance mRNA stability and translation, yet its role in inflammatory bowel disease (IBD) remains unclear. In this study, we discovered that Nat10 expression correlates with inflammatory and apoptotic pathways in human ulcerative colitis CD4<sup>+</sup> T cells. Our further analysis revealed that the deficiency of NAT10 led to a disruption of T cell development at steady state, and identified a pivotal role for NAT10 in preserving the pathogenicity of naïve CD4<sup>+</sup> T cells to induce adoptive transfer colitis. Mechanistically, the lack of NAT10 triggers the diminished stability of the anti-apoptotic gene BCL2-associated athanogene 3 (Bag3), initiating a cascade of events that includes the upregulation of apoptosis-related genes and an accelerated rate of apoptosis in T cells. Our findings reveal a previously unrecognized role of the NAT10-ac<sup>4</sup>C-Bag3 axis in preserving T cell balance and suggests that targeting RNA ac<sup>4</sup>C modification could be a promising therapeutic approach for IBD.</p>\",\"PeriodicalId\":9674,\"journal\":{\"name\":\"Cell Discovery\",\"volume\":\"11 1\",\"pages\":\"19\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11880361/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Discovery\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41421-025-00781-5\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Discovery","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41421-025-00781-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
RNA cytidine acetyltransferase NAT10 maintains T cell pathogenicity in inflammatory bowel disease.
The emerging field of epitranscriptomics is reshaping our understanding of post-transcriptional gene regulation in inflammatory diseases. N4-acetylcytidine (ac4C), the only known acetylation modification in RNA catalyzed by N-acetyltransferase 10 (NAT10), is known to enhance mRNA stability and translation, yet its role in inflammatory bowel disease (IBD) remains unclear. In this study, we discovered that Nat10 expression correlates with inflammatory and apoptotic pathways in human ulcerative colitis CD4+ T cells. Our further analysis revealed that the deficiency of NAT10 led to a disruption of T cell development at steady state, and identified a pivotal role for NAT10 in preserving the pathogenicity of naïve CD4+ T cells to induce adoptive transfer colitis. Mechanistically, the lack of NAT10 triggers the diminished stability of the anti-apoptotic gene BCL2-associated athanogene 3 (Bag3), initiating a cascade of events that includes the upregulation of apoptosis-related genes and an accelerated rate of apoptosis in T cells. Our findings reveal a previously unrecognized role of the NAT10-ac4C-Bag3 axis in preserving T cell balance and suggests that targeting RNA ac4C modification could be a promising therapeutic approach for IBD.
Cell DiscoveryBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
24.20
自引率
0.60%
发文量
120
审稿时长
20 weeks
期刊介绍:
Cell Discovery is a cutting-edge, open access journal published by Springer Nature in collaboration with the Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences (CAS). Our aim is to provide a dynamic and accessible platform for scientists to showcase their exceptional original research.
Cell Discovery covers a wide range of topics within the fields of molecular and cell biology. We eagerly publish results of great significance and that are of broad interest to the scientific community. With an international authorship and a focus on basic life sciences, our journal is a valued member of Springer Nature's prestigious Molecular Cell Biology journals.
In summary, Cell Discovery offers a fresh approach to scholarly publishing, enabling scientists from around the world to share their exceptional findings in molecular and cell biology.