HSSPPI: ppi预测的分层和空间序列建模。

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Yuguang Li, Zhen Tian, Xiaofei Nan, Shoutao Zhang, Qinglei Zhou, Shuai Lu
{"title":"HSSPPI: ppi预测的分层和空间序列建模。","authors":"Yuguang Li, Zhen Tian, Xiaofei Nan, Shoutao Zhang, Qinglei Zhou, Shuai Lu","doi":"10.1093/bib/bbaf079","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Protein-protein interactions play a fundamental role in biological systems. Accurate detection of protein-protein interaction sites (PPIs) remains a challenge. And, the methods of PPIs prediction based on biological experiments are expensive. Recently, a lot of computation-based methods have been developed and made great progress. However, current computational methods only focus on one form of protein, using only protein spatial conformation or primary sequence. And, the protein's natural hierarchical structure is ignored.</p><p><strong>Results: </strong>In this study, we propose a novel network architecture, HSSPPI, through hierarchical and spatial-sequential modeling of protein for PPIs prediction. In this network, we represent protein as a hierarchical graph, in which a node in the protein is a residue (residue-level graph) and a node in the residue is an atom (atom-level graph). Moreover, we design a spatial-sequential block for capturing complex interaction relationships from spatial and sequential forms of protein. We evaluate HSSPPI on public benchmark datasets and the predicting results outperform the comparative models. This indicates the effectiveness of hierarchical protein modeling and also illustrates that HSSPPI has a strong feature extraction ability by considering spatial and sequential information simultaneously.</p><p><strong>Availability and implementation: </strong>The code of HSSPPI is available at https://github.com/biolushuai/Hierarchical-Spatial-Sequential-Modeling-of-Protein.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879409/pdf/","citationCount":"0","resultStr":"{\"title\":\"HSSPPI: hierarchical and spatial-sequential modeling for PPIs prediction.\",\"authors\":\"Yuguang Li, Zhen Tian, Xiaofei Nan, Shoutao Zhang, Qinglei Zhou, Shuai Lu\",\"doi\":\"10.1093/bib/bbaf079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>Protein-protein interactions play a fundamental role in biological systems. Accurate detection of protein-protein interaction sites (PPIs) remains a challenge. And, the methods of PPIs prediction based on biological experiments are expensive. Recently, a lot of computation-based methods have been developed and made great progress. However, current computational methods only focus on one form of protein, using only protein spatial conformation or primary sequence. And, the protein's natural hierarchical structure is ignored.</p><p><strong>Results: </strong>In this study, we propose a novel network architecture, HSSPPI, through hierarchical and spatial-sequential modeling of protein for PPIs prediction. In this network, we represent protein as a hierarchical graph, in which a node in the protein is a residue (residue-level graph) and a node in the residue is an atom (atom-level graph). Moreover, we design a spatial-sequential block for capturing complex interaction relationships from spatial and sequential forms of protein. We evaluate HSSPPI on public benchmark datasets and the predicting results outperform the comparative models. This indicates the effectiveness of hierarchical protein modeling and also illustrates that HSSPPI has a strong feature extraction ability by considering spatial and sequential information simultaneously.</p><p><strong>Availability and implementation: </strong>The code of HSSPPI is available at https://github.com/biolushuai/Hierarchical-Spatial-Sequential-Modeling-of-Protein.</p>\",\"PeriodicalId\":9209,\"journal\":{\"name\":\"Briefings in bioinformatics\",\"volume\":\"26 2\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879409/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bib/bbaf079\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf079","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

动机:蛋白质之间的相互作用在生物系统中起着重要作用。准确检测蛋白-蛋白相互作用位点(PPIs)仍然是一个挑战。而基于生物实验的ppi预测方法成本较高。近年来,许多基于计算的方法得到了发展,并取得了很大的进展。然而,目前的计算方法只关注蛋白质的一种形式,只使用蛋白质的空间构象或一级序列。而且,蛋白质的自然层次结构被忽略了。结果:在本研究中,我们提出了一种新的网络架构HSSPPI,通过蛋白质的分层和空间序列建模来预测ppi。在该网络中,我们将蛋白质表示为一个层次图,其中蛋白质中的一个节点是残基(残基级图),残基中的一个节点是原子(原子级图)。此外,我们设计了一个空间序列块,用于从空间和序列形式的蛋白质中捕获复杂的相互作用关系。我们在公共基准数据集上对HSSPPI进行了评估,预测结果优于比较模型。这表明了分层蛋白质建模的有效性,也说明HSSPPI同时考虑空间信息和序列信息,具有较强的特征提取能力。可用性和实现:HSSPPI的代码可在https://github.com/biolushuai/Hierarchical-Spatial-Sequential-Modeling-of-Protein上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HSSPPI: hierarchical and spatial-sequential modeling for PPIs prediction.

Motivation: Protein-protein interactions play a fundamental role in biological systems. Accurate detection of protein-protein interaction sites (PPIs) remains a challenge. And, the methods of PPIs prediction based on biological experiments are expensive. Recently, a lot of computation-based methods have been developed and made great progress. However, current computational methods only focus on one form of protein, using only protein spatial conformation or primary sequence. And, the protein's natural hierarchical structure is ignored.

Results: In this study, we propose a novel network architecture, HSSPPI, through hierarchical and spatial-sequential modeling of protein for PPIs prediction. In this network, we represent protein as a hierarchical graph, in which a node in the protein is a residue (residue-level graph) and a node in the residue is an atom (atom-level graph). Moreover, we design a spatial-sequential block for capturing complex interaction relationships from spatial and sequential forms of protein. We evaluate HSSPPI on public benchmark datasets and the predicting results outperform the comparative models. This indicates the effectiveness of hierarchical protein modeling and also illustrates that HSSPPI has a strong feature extraction ability by considering spatial and sequential information simultaneously.

Availability and implementation: The code of HSSPPI is available at https://github.com/biolushuai/Hierarchical-Spatial-Sequential-Modeling-of-Protein.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信