KIDBA-Net:一种基于核起始深度卷积和双交叉注意的多特征融合脑肿瘤分割网络

IF 2.5 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Jie Min, Tongyuan Huang, Boxiong Huang, Chuanxin Hu, Zhixing Zhang
{"title":"KIDBA-Net:一种基于核起始深度卷积和双交叉注意的多特征融合脑肿瘤分割网络","authors":"Jie Min,&nbsp;Tongyuan Huang,&nbsp;Boxiong Huang,&nbsp;Chuanxin Hu,&nbsp;Zhixing Zhang","doi":"10.1002/ima.70055","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Automatic brain tumor segmentation technology plays a crucial role in tumor diagnosis, particularly in the precise delineation of tumor subregions. It can assist doctors in accurately assessing the type and location of brain tumors, potentially saving patients' lives. However, the highly variable size and shape of brain tumors, along with their similarity to healthy tissue, pose significant challenges in the segmentation of multi-label brain tumor subregions. This paper proposes a network model, KIDBA-Net, based on an encoder-decoder architecture, aimed at solving the issue of pixel-level classification errors in multi-label tumor subregions. The proposed Kernel Inception Depthwise Block (KIDB) employs multi-kernel depthwise convolution to extract multi-scale features in parallel, accurately capturing the feature differences between tumor types to mitigate misclassification. To ensure the network focuses more on the lesion areas and excludes the interference of irrelevant tissues, this paper adopts Bi-Cross Attention as a skip connection hub to bridge the semantic gap between layers. Additionally, the Dynamic Feature Reconstruction Block (DFRB) exploits the complementary advantages of convolution and dynamic upsampling operators, effectively aiding the model in generating high-resolution prediction maps during the decoding phase. The proposed model surpasses other state-of-the-art brain tumor segmentation methods on the BraTS2018 and BraTS2019 datasets, particularly in the segmentation accuracy of smaller and highly overlapping tumor core (TC) and enhanced tumor (ET), achieving DSC scores of 87.8%, 82.0%, and 90.2%, 88.7%, respectively; Hausdorff distances of 2.8, 2.7 mm, and 2.7, 2.0 mm.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"35 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"KIDBA-Net: A Multi-Feature Fusion Brain Tumor Segmentation Network Utilizing Kernel Inception Depthwise Convolution and Bi-Cross Attention\",\"authors\":\"Jie Min,&nbsp;Tongyuan Huang,&nbsp;Boxiong Huang,&nbsp;Chuanxin Hu,&nbsp;Zhixing Zhang\",\"doi\":\"10.1002/ima.70055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Automatic brain tumor segmentation technology plays a crucial role in tumor diagnosis, particularly in the precise delineation of tumor subregions. It can assist doctors in accurately assessing the type and location of brain tumors, potentially saving patients' lives. However, the highly variable size and shape of brain tumors, along with their similarity to healthy tissue, pose significant challenges in the segmentation of multi-label brain tumor subregions. This paper proposes a network model, KIDBA-Net, based on an encoder-decoder architecture, aimed at solving the issue of pixel-level classification errors in multi-label tumor subregions. The proposed Kernel Inception Depthwise Block (KIDB) employs multi-kernel depthwise convolution to extract multi-scale features in parallel, accurately capturing the feature differences between tumor types to mitigate misclassification. To ensure the network focuses more on the lesion areas and excludes the interference of irrelevant tissues, this paper adopts Bi-Cross Attention as a skip connection hub to bridge the semantic gap between layers. Additionally, the Dynamic Feature Reconstruction Block (DFRB) exploits the complementary advantages of convolution and dynamic upsampling operators, effectively aiding the model in generating high-resolution prediction maps during the decoding phase. The proposed model surpasses other state-of-the-art brain tumor segmentation methods on the BraTS2018 and BraTS2019 datasets, particularly in the segmentation accuracy of smaller and highly overlapping tumor core (TC) and enhanced tumor (ET), achieving DSC scores of 87.8%, 82.0%, and 90.2%, 88.7%, respectively; Hausdorff distances of 2.8, 2.7 mm, and 2.7, 2.0 mm.</p>\\n </div>\",\"PeriodicalId\":14027,\"journal\":{\"name\":\"International Journal of Imaging Systems and Technology\",\"volume\":\"35 2\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Imaging Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ima.70055\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.70055","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

脑肿瘤自动分割技术在肿瘤诊断中起着至关重要的作用,特别是在肿瘤亚区精确划分方面。它可以帮助医生准确评估脑肿瘤的类型和位置,有可能挽救患者的生命。然而,脑肿瘤高度可变的大小和形状,以及它们与健康组织的相似性,给多标签脑肿瘤亚区的分割带来了重大挑战。本文提出了一种基于编码器-解码器架构的网络模型KIDBA-Net,旨在解决多标签肿瘤子区域的像素级分类错误问题。提出的核初始深度块(Kernel Inception depth - wise Block, KIDB)采用多核深度卷积并行提取多尺度特征,准确捕捉肿瘤类型之间的特征差异,减少误分类。为了保证网络更加关注病变区域,排除无关组织的干扰,本文采用Bi-Cross Attention作为跳跃式连接枢纽来弥合层与层之间的语义鸿沟。此外,动态特征重构块(DFRB)利用卷积和动态上采样算子的互补优势,有效地帮助模型在解码阶段生成高分辨率预测图。该模型在BraTS2018和BraTS2019数据集上优于其他最先进的脑肿瘤分割方法,特别是在较小和高度重叠的肿瘤核心(TC)和增强肿瘤(ET)的分割精度方面,DSC得分分别达到87.8%、82.0%和90.2%、88.7%;豪斯多夫距离分别为2.8、2.7 mm和2.7、2.0 mm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
KIDBA-Net: A Multi-Feature Fusion Brain Tumor Segmentation Network Utilizing Kernel Inception Depthwise Convolution and Bi-Cross Attention

Automatic brain tumor segmentation technology plays a crucial role in tumor diagnosis, particularly in the precise delineation of tumor subregions. It can assist doctors in accurately assessing the type and location of brain tumors, potentially saving patients' lives. However, the highly variable size and shape of brain tumors, along with their similarity to healthy tissue, pose significant challenges in the segmentation of multi-label brain tumor subregions. This paper proposes a network model, KIDBA-Net, based on an encoder-decoder architecture, aimed at solving the issue of pixel-level classification errors in multi-label tumor subregions. The proposed Kernel Inception Depthwise Block (KIDB) employs multi-kernel depthwise convolution to extract multi-scale features in parallel, accurately capturing the feature differences between tumor types to mitigate misclassification. To ensure the network focuses more on the lesion areas and excludes the interference of irrelevant tissues, this paper adopts Bi-Cross Attention as a skip connection hub to bridge the semantic gap between layers. Additionally, the Dynamic Feature Reconstruction Block (DFRB) exploits the complementary advantages of convolution and dynamic upsampling operators, effectively aiding the model in generating high-resolution prediction maps during the decoding phase. The proposed model surpasses other state-of-the-art brain tumor segmentation methods on the BraTS2018 and BraTS2019 datasets, particularly in the segmentation accuracy of smaller and highly overlapping tumor core (TC) and enhanced tumor (ET), achieving DSC scores of 87.8%, 82.0%, and 90.2%, 88.7%, respectively; Hausdorff distances of 2.8, 2.7 mm, and 2.7, 2.0 mm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Imaging Systems and Technology
International Journal of Imaging Systems and Technology 工程技术-成像科学与照相技术
CiteScore
6.90
自引率
6.10%
发文量
138
审稿时长
3 months
期刊介绍: The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals. IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging. The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered. The scope of the journal includes, but is not limited to, the following in the context of biomedical research: Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.; Neuromodulation and brain stimulation techniques such as TMS and tDCS; Software and hardware for imaging, especially related to human and animal health; Image segmentation in normal and clinical populations; Pattern analysis and classification using machine learning techniques; Computational modeling and analysis; Brain connectivity and connectomics; Systems-level characterization of brain function; Neural networks and neurorobotics; Computer vision, based on human/animal physiology; Brain-computer interface (BCI) technology; Big data, databasing and data mining.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信