用适形预测评价药品分类模型

IF 2.3 4区 化学 Q1 SOCIAL WORK
Karl S. Booksh, Caelin P. Celani, Nicole M. Ralbovsky, Joseph P. Smith
{"title":"用适形预测评价药品分类模型","authors":"Karl S. Booksh,&nbsp;Caelin P. Celani,&nbsp;Nicole M. Ralbovsky,&nbsp;Joseph P. Smith","doi":"10.1002/cem.70017","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Conformal predictions transform a measurable, heuristic notion of uncertainty into statistically valid confidence intervals such that, for a future sample, the true class prediction will be included in the conformal prediction set at a predetermined confidence. In a Bayesian perspective, common estimates of uncertainty in multivariate classification, namely <i>p</i>-values, only provide the probability that the data fits the presumed class model, <i>P(D|M)</i>. Conformal predictions, on the other hand, address the more meaningful probability that a model fits the data, <i>P(M|D)</i>. Herein, two methods to perform inductive conformal predictions are investigated—the traditional Split Conformal Prediction that uses an external calibration set and a novel Bagged Conformal Prediction, closely related to Cross Conformal Predictions, that utilizes bagging to calibrate the heuristic notions of uncertainty. Methods for preprocessing the conformal prediction scores to improve performance are discussed and investigated. These conformal prediction strategies are applied to identifying four non-steroidal anti-inflammatory drugs (NSAIDs) from hyperspectral Raman imaging data. In addition to assigning meaningful confidence intervals on the model results, we herein demonstrate how conformal predictions can add additional diagnostics for model quality and method stability.</p>\n </div>","PeriodicalId":15274,"journal":{"name":"Journal of Chemometrics","volume":"39 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing Classification Models of Pharmaceuticals With Conformal Prediction\",\"authors\":\"Karl S. Booksh,&nbsp;Caelin P. Celani,&nbsp;Nicole M. Ralbovsky,&nbsp;Joseph P. Smith\",\"doi\":\"10.1002/cem.70017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Conformal predictions transform a measurable, heuristic notion of uncertainty into statistically valid confidence intervals such that, for a future sample, the true class prediction will be included in the conformal prediction set at a predetermined confidence. In a Bayesian perspective, common estimates of uncertainty in multivariate classification, namely <i>p</i>-values, only provide the probability that the data fits the presumed class model, <i>P(D|M)</i>. Conformal predictions, on the other hand, address the more meaningful probability that a model fits the data, <i>P(M|D)</i>. Herein, two methods to perform inductive conformal predictions are investigated—the traditional Split Conformal Prediction that uses an external calibration set and a novel Bagged Conformal Prediction, closely related to Cross Conformal Predictions, that utilizes bagging to calibrate the heuristic notions of uncertainty. Methods for preprocessing the conformal prediction scores to improve performance are discussed and investigated. These conformal prediction strategies are applied to identifying four non-steroidal anti-inflammatory drugs (NSAIDs) from hyperspectral Raman imaging data. In addition to assigning meaningful confidence intervals on the model results, we herein demonstrate how conformal predictions can add additional diagnostics for model quality and method stability.</p>\\n </div>\",\"PeriodicalId\":15274,\"journal\":{\"name\":\"Journal of Chemometrics\",\"volume\":\"39 3\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemometrics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cem.70017\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOCIAL WORK\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemometrics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cem.70017","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOCIAL WORK","Score":null,"Total":0}
引用次数: 0

摘要

保形预测将一个可测量的、启发式的不确定性概念转化为统计上有效的置信区间,这样,对于未来的样本,真实的类预测将以预定的置信度包含在保形预测集中。从贝叶斯的角度来看,多变量分类中常见的不确定性估计,即P值,仅提供数据符合假定的类模型P(D|M)的概率。另一方面,保形预测指出模型拟合数据的更有意义的概率P(M|D)。本文研究了两种进行归纳共形预测的方法——使用外部校准集的传统分裂共形预测和与交叉共形预测密切相关的新型袋装共形预测,它利用袋装来校准不确定性的启发式概念。讨论和研究了对适形预测分数进行预处理以提高预测性能的方法。这些适形预测策略应用于从高光谱拉曼成像数据中识别四种非甾体抗炎药(NSAIDs)。除了在模型结果上分配有意义的置信区间之外,我们在此演示了适形预测如何为模型质量和方法稳定性添加额外的诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing Classification Models of Pharmaceuticals With Conformal Prediction

Conformal predictions transform a measurable, heuristic notion of uncertainty into statistically valid confidence intervals such that, for a future sample, the true class prediction will be included in the conformal prediction set at a predetermined confidence. In a Bayesian perspective, common estimates of uncertainty in multivariate classification, namely p-values, only provide the probability that the data fits the presumed class model, P(D|M). Conformal predictions, on the other hand, address the more meaningful probability that a model fits the data, P(M|D). Herein, two methods to perform inductive conformal predictions are investigated—the traditional Split Conformal Prediction that uses an external calibration set and a novel Bagged Conformal Prediction, closely related to Cross Conformal Predictions, that utilizes bagging to calibrate the heuristic notions of uncertainty. Methods for preprocessing the conformal prediction scores to improve performance are discussed and investigated. These conformal prediction strategies are applied to identifying four non-steroidal anti-inflammatory drugs (NSAIDs) from hyperspectral Raman imaging data. In addition to assigning meaningful confidence intervals on the model results, we herein demonstrate how conformal predictions can add additional diagnostics for model quality and method stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Chemometrics
Journal of Chemometrics 化学-分析化学
CiteScore
5.20
自引率
8.30%
发文量
78
审稿时长
2 months
期刊介绍: The Journal of Chemometrics is devoted to the rapid publication of original scientific papers, reviews and short communications on fundamental and applied aspects of chemometrics. It also provides a forum for the exchange of information on meetings and other news relevant to the growing community of scientists who are interested in chemometrics and its applications. Short, critical review papers are a particularly important feature of the journal, in view of the multidisciplinary readership at which it is aimed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信