Maria Leko, Polina Filippova, Karin Rustler, Thomas Bruckdorfer, Sergey Burov
{"title":"肽酰肼的固相合成:走向绿色化学","authors":"Maria Leko, Polina Filippova, Karin Rustler, Thomas Bruckdorfer, Sergey Burov","doi":"10.1002/psc.70010","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Peptide hydrazides are widely applied as precursors of peptide thioesters, valuable building blocks for the synthesis of proteins by native chemical ligation. In addition, they can be applied for the selective modification of cargo or carrier molecules using hydrazone ligation technique. In this work, we describe key aspects of solid phase synthesis of peptide hydrazides on hydrazine 2CT and hydrazone resin. Special attention is paid to the optimization of synthetic procedures using “preferred” and “usable” organic solvents. Thus, optimization of 2-CTC resin loading with Fmoc-hydrazine permits to reduce reagents consumption and avoid DMF and DCM application. The final products can be released from the polymer support with simultaneous BOC removal with 5% HCl (aq) in acetone. Although this protocol demands subsequent peptide deprotection to remove other protecting groups, it benefits of significantly reduced TFA consumption. Because of improved stability in acidic conditions and the possibility of selective Mtt removal and peptide cleavage in green solvents, hydrazone resin can be considered as a useful alternative for peptide hydrazides synthesis. Obtained results can simplify the synthesis of peptide building blocks for native chemical ligation using CMR-free reagents and solvents.</p>\n </div>","PeriodicalId":16946,"journal":{"name":"Journal of Peptide Science","volume":"31 4","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solid-Phase Synthesis of Peptide Hydrazides: Moving Toward Green Chemistry\",\"authors\":\"Maria Leko, Polina Filippova, Karin Rustler, Thomas Bruckdorfer, Sergey Burov\",\"doi\":\"10.1002/psc.70010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Peptide hydrazides are widely applied as precursors of peptide thioesters, valuable building blocks for the synthesis of proteins by native chemical ligation. In addition, they can be applied for the selective modification of cargo or carrier molecules using hydrazone ligation technique. In this work, we describe key aspects of solid phase synthesis of peptide hydrazides on hydrazine 2CT and hydrazone resin. Special attention is paid to the optimization of synthetic procedures using “preferred” and “usable” organic solvents. Thus, optimization of 2-CTC resin loading with Fmoc-hydrazine permits to reduce reagents consumption and avoid DMF and DCM application. The final products can be released from the polymer support with simultaneous BOC removal with 5% HCl (aq) in acetone. Although this protocol demands subsequent peptide deprotection to remove other protecting groups, it benefits of significantly reduced TFA consumption. Because of improved stability in acidic conditions and the possibility of selective Mtt removal and peptide cleavage in green solvents, hydrazone resin can be considered as a useful alternative for peptide hydrazides synthesis. Obtained results can simplify the synthesis of peptide building blocks for native chemical ligation using CMR-free reagents and solvents.</p>\\n </div>\",\"PeriodicalId\":16946,\"journal\":{\"name\":\"Journal of Peptide Science\",\"volume\":\"31 4\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Peptide Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/psc.70010\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Peptide Science","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/psc.70010","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Solid-Phase Synthesis of Peptide Hydrazides: Moving Toward Green Chemistry
Peptide hydrazides are widely applied as precursors of peptide thioesters, valuable building blocks for the synthesis of proteins by native chemical ligation. In addition, they can be applied for the selective modification of cargo or carrier molecules using hydrazone ligation technique. In this work, we describe key aspects of solid phase synthesis of peptide hydrazides on hydrazine 2CT and hydrazone resin. Special attention is paid to the optimization of synthetic procedures using “preferred” and “usable” organic solvents. Thus, optimization of 2-CTC resin loading with Fmoc-hydrazine permits to reduce reagents consumption and avoid DMF and DCM application. The final products can be released from the polymer support with simultaneous BOC removal with 5% HCl (aq) in acetone. Although this protocol demands subsequent peptide deprotection to remove other protecting groups, it benefits of significantly reduced TFA consumption. Because of improved stability in acidic conditions and the possibility of selective Mtt removal and peptide cleavage in green solvents, hydrazone resin can be considered as a useful alternative for peptide hydrazides synthesis. Obtained results can simplify the synthesis of peptide building blocks for native chemical ligation using CMR-free reagents and solvents.
期刊介绍:
The official Journal of the European Peptide Society EPS
The Journal of Peptide Science is a cooperative venture of John Wiley & Sons, Ltd and the European Peptide Society, undertaken for the advancement of international peptide science by the publication of original research results and reviews. The Journal of Peptide Science publishes three types of articles: Research Articles, Rapid Communications and Reviews.
The scope of the Journal embraces the whole range of peptide chemistry and biology: the isolation, characterisation, synthesis properties (chemical, physical, conformational, pharmacological, endocrine and immunological) and applications of natural peptides; studies of their analogues, including peptidomimetics; peptide antibiotics and other peptide-derived complex natural products; peptide and peptide-related drug design and development; peptide materials and nanomaterials science; combinatorial peptide research; the chemical synthesis of proteins; and methodological advances in all these areas. The spectrum of interests is well illustrated by the published proceedings of the regular international Symposia of the European, American, Japanese, Australian, Chinese and Indian Peptide Societies.