{"title":"将计算思维融入虚拟实验室,提高学习动机、参与度和高阶思维技能","authors":"Ting-Ting Wu, Edi Sarwono, Yueh-Min Huang","doi":"10.1111/jcal.70017","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Virtual laboratories are used to supplement or even replace physical laboratories in engineering education. Although these virtual laboratories allow students to learn foundational experimental skills, they do not provide the learners with the chance to develop higher-order thinking skills (HOTS). Computational thinking (CT) is an approach to problem-solving. Incorporating the CT approach into virtual laboratories to enhance problem-solving skills and critical thinking skills is still understudied.</p>\n </section>\n \n <section>\n \n <h3> Objectives</h3>\n \n <p>This study investigated the effect of incorporating the CT approach into virtual laboratories on the learning motivation, engagement, and HOTS of students.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>A quasi-experimental study was conducted to investigate the impact of the proposed approach. Forty-eight undergraduate electrical engineering students participated in this study. Pre- and post-test questionnaire data on learning motivation, engagement, and HOTS were collected from both an experimental group that utilised virtual laboratories and a computational thinking approach and a control group that used virtual laboratories only.</p>\n </section>\n \n <section>\n \n <h3> Results and Conclusions</h3>\n \n <p>The result of the quantitative analysis revealed that incorporating the CT approach into virtual laboratories resulted in a significant difference in learning motivation, engagement, and HOTS between the experimental and control groups. These findings point out that incorporating the CT approach into virtual laboratories positively affects the learning motivation, engagement, and HOTS of learners who are enrolled in practical courses.</p>\n </section>\n </div>","PeriodicalId":48071,"journal":{"name":"Journal of Computer Assisted Learning","volume":"41 2","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incorporating Computational Thinking Into Virtual Laboratories to Enhance Learning Motivation, Engagement, and Higher-Order Thinking Skills\",\"authors\":\"Ting-Ting Wu, Edi Sarwono, Yueh-Min Huang\",\"doi\":\"10.1111/jcal.70017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Virtual laboratories are used to supplement or even replace physical laboratories in engineering education. Although these virtual laboratories allow students to learn foundational experimental skills, they do not provide the learners with the chance to develop higher-order thinking skills (HOTS). Computational thinking (CT) is an approach to problem-solving. Incorporating the CT approach into virtual laboratories to enhance problem-solving skills and critical thinking skills is still understudied.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Objectives</h3>\\n \\n <p>This study investigated the effect of incorporating the CT approach into virtual laboratories on the learning motivation, engagement, and HOTS of students.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>A quasi-experimental study was conducted to investigate the impact of the proposed approach. Forty-eight undergraduate electrical engineering students participated in this study. Pre- and post-test questionnaire data on learning motivation, engagement, and HOTS were collected from both an experimental group that utilised virtual laboratories and a computational thinking approach and a control group that used virtual laboratories only.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results and Conclusions</h3>\\n \\n <p>The result of the quantitative analysis revealed that incorporating the CT approach into virtual laboratories resulted in a significant difference in learning motivation, engagement, and HOTS between the experimental and control groups. These findings point out that incorporating the CT approach into virtual laboratories positively affects the learning motivation, engagement, and HOTS of learners who are enrolled in practical courses.</p>\\n </section>\\n </div>\",\"PeriodicalId\":48071,\"journal\":{\"name\":\"Journal of Computer Assisted Learning\",\"volume\":\"41 2\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Assisted Learning\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jcal.70017\",\"RegionNum\":2,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Assisted Learning","FirstCategoryId":"95","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcal.70017","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Incorporating Computational Thinking Into Virtual Laboratories to Enhance Learning Motivation, Engagement, and Higher-Order Thinking Skills
Background
Virtual laboratories are used to supplement or even replace physical laboratories in engineering education. Although these virtual laboratories allow students to learn foundational experimental skills, they do not provide the learners with the chance to develop higher-order thinking skills (HOTS). Computational thinking (CT) is an approach to problem-solving. Incorporating the CT approach into virtual laboratories to enhance problem-solving skills and critical thinking skills is still understudied.
Objectives
This study investigated the effect of incorporating the CT approach into virtual laboratories on the learning motivation, engagement, and HOTS of students.
Methods
A quasi-experimental study was conducted to investigate the impact of the proposed approach. Forty-eight undergraduate electrical engineering students participated in this study. Pre- and post-test questionnaire data on learning motivation, engagement, and HOTS were collected from both an experimental group that utilised virtual laboratories and a computational thinking approach and a control group that used virtual laboratories only.
Results and Conclusions
The result of the quantitative analysis revealed that incorporating the CT approach into virtual laboratories resulted in a significant difference in learning motivation, engagement, and HOTS between the experimental and control groups. These findings point out that incorporating the CT approach into virtual laboratories positively affects the learning motivation, engagement, and HOTS of learners who are enrolled in practical courses.
期刊介绍:
The Journal of Computer Assisted Learning is an international peer-reviewed journal which covers the whole range of uses of information and communication technology to support learning and knowledge exchange. It aims to provide a medium for communication among researchers as well as a channel linking researchers, practitioners, and policy makers. JCAL is also a rich source of material for master and PhD students in areas such as educational psychology, the learning sciences, instructional technology, instructional design, collaborative learning, intelligent learning systems, learning analytics, open, distance and networked learning, and educational evaluation and assessment. This is the case for formal (e.g., schools), non-formal (e.g., workplace learning) and informal learning (e.g., museums and libraries) situations and environments. Volumes often include one Special Issue which these provides readers with a broad and in-depth perspective on a specific topic. First published in 1985, JCAL continues to have the aim of making the outcomes of contemporary research and experience accessible. During this period there have been major technological advances offering new opportunities and approaches in the use of a wide range of technologies to support learning and knowledge transfer more generally. There is currently much emphasis on the use of network functionality and the challenges its appropriate uses pose to teachers/tutors working with students locally and at a distance. JCAL welcomes: -Empirical reports, single studies or programmatic series of studies on the use of computers and information technologies in learning and assessment -Critical and original meta-reviews of literature on the use of computers for learning -Empirical studies on the design and development of innovative technology-based systems for learning -Conceptual articles on issues relating to the Aims and Scope