室内环境中物理层密钥生成的多尺度主成分分析方法

IF 2.5 4区 计算机科学 Q3 TELECOMMUNICATIONS
Megha Santhosh Kumar, Ramanathan Ramachandran
{"title":"室内环境中物理层密钥生成的多尺度主成分分析方法","authors":"Megha Santhosh Kumar,&nbsp;Ramanathan Ramachandran","doi":"10.1002/ett.70100","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>With the rise of Industry 5.0, smart cities, and the ever-expanding use of general wireless networks, ensuring seamless communication and robust data security has become a critical challenge. Generating secure secret keys (SKG) through wireless channels is particularly complex in environments where noise and wideband conditions introduce discrepancies and autocorrelation in channel measurements. These issues compromise cross-correlation and randomness, leading to substantial bit disagreements, distinct keys at the transceivers, and unsuccessful SKG. This research begins by outlining the mathematical model of the signal preprocessing technique called multiscale principal component analysis (MSPCA). Subsequently, it explores the performance of key generation when employing the proposed scheme. A holistic system-level framework for creating initial shared keys is presented, encompassing quantization methods such as uniform multilevel quantization (UMQ) and encoding methods such as 3-bit Gray encoding. Monte Carlo-based simulations in an indoor scenario evaluate system efficacy using metrics like Pearson correlation coefficient, bit disagreement rate (BDR), randomness, and complexity. The proposed scheme achieves a BDR lower than 0.01, a correlation coefficient greater than 0.95, and passes all National Institute of Standards and Technology (NIST) randomness tests, establishing it as a viable solution for securing wireless systems. In the context of Industry 5.0 and smart city infrastructures, where seamless communication and robust data security are paramount, the proposed SKG framework offers significant potential. With its ability to ensure secure and reliable communication, this scheme can underpin the development of advanced wireless systems that cater to the high demands of interconnected ecosystems, enhancing resilience and trust in critical applications.</p>\n </div>","PeriodicalId":23282,"journal":{"name":"Transactions on Emerging Telecommunications Technologies","volume":"36 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multiscale Principal Component Analysis Approach to Physical Layer Secret Key Generation in Indoor Environments\",\"authors\":\"Megha Santhosh Kumar,&nbsp;Ramanathan Ramachandran\",\"doi\":\"10.1002/ett.70100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>With the rise of Industry 5.0, smart cities, and the ever-expanding use of general wireless networks, ensuring seamless communication and robust data security has become a critical challenge. Generating secure secret keys (SKG) through wireless channels is particularly complex in environments where noise and wideband conditions introduce discrepancies and autocorrelation in channel measurements. These issues compromise cross-correlation and randomness, leading to substantial bit disagreements, distinct keys at the transceivers, and unsuccessful SKG. This research begins by outlining the mathematical model of the signal preprocessing technique called multiscale principal component analysis (MSPCA). Subsequently, it explores the performance of key generation when employing the proposed scheme. A holistic system-level framework for creating initial shared keys is presented, encompassing quantization methods such as uniform multilevel quantization (UMQ) and encoding methods such as 3-bit Gray encoding. Monte Carlo-based simulations in an indoor scenario evaluate system efficacy using metrics like Pearson correlation coefficient, bit disagreement rate (BDR), randomness, and complexity. The proposed scheme achieves a BDR lower than 0.01, a correlation coefficient greater than 0.95, and passes all National Institute of Standards and Technology (NIST) randomness tests, establishing it as a viable solution for securing wireless systems. In the context of Industry 5.0 and smart city infrastructures, where seamless communication and robust data security are paramount, the proposed SKG framework offers significant potential. With its ability to ensure secure and reliable communication, this scheme can underpin the development of advanced wireless systems that cater to the high demands of interconnected ecosystems, enhancing resilience and trust in critical applications.</p>\\n </div>\",\"PeriodicalId\":23282,\"journal\":{\"name\":\"Transactions on Emerging Telecommunications Technologies\",\"volume\":\"36 3\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Emerging Telecommunications Technologies\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ett.70100\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Emerging Telecommunications Technologies","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ett.70100","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

随着工业5.0、智慧城市的兴起,以及通用无线网络的不断扩大使用,确保无缝通信和强大的数据安全已成为一项关键挑战。在噪声和宽带条件在信道测量中引入差异和自相关的环境中,通过无线信道生成安全密钥(SKG)特别复杂。这些问题损害了相互关联和随机性,导致大量的比特分歧、收发器上的不同密钥和不成功的SKG。本研究首先概述了称为多尺度主成分分析(MSPCA)的信号预处理技术的数学模型。随后,探讨了采用所提出方案时密钥生成的性能。提出了一个用于创建初始共享密钥的整体系统级框架,包括统一多层量化(UMQ)等量化方法和3位灰度编码等编码方法。基于蒙特卡罗的室内模拟使用皮尔逊相关系数、比特不一致率(BDR)、随机性和复杂性等指标来评估系统的有效性。该方案的BDR小于0.01,相关系数大于0.95,并通过了美国国家标准与技术研究所(NIST)的所有随机性测试,成为无线系统安全的可行解决方案。在工业5.0和智慧城市基础设施的背景下,无缝通信和强大的数据安全至关重要,拟议的SKG框架提供了巨大的潜力。凭借其确保安全可靠通信的能力,该方案可以支持先进无线系统的开发,以满足互联生态系统的高要求,增强关键应用的弹性和信任。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Multiscale Principal Component Analysis Approach to Physical Layer Secret Key Generation in Indoor Environments

A Multiscale Principal Component Analysis Approach to Physical Layer Secret Key Generation in Indoor Environments

With the rise of Industry 5.0, smart cities, and the ever-expanding use of general wireless networks, ensuring seamless communication and robust data security has become a critical challenge. Generating secure secret keys (SKG) through wireless channels is particularly complex in environments where noise and wideband conditions introduce discrepancies and autocorrelation in channel measurements. These issues compromise cross-correlation and randomness, leading to substantial bit disagreements, distinct keys at the transceivers, and unsuccessful SKG. This research begins by outlining the mathematical model of the signal preprocessing technique called multiscale principal component analysis (MSPCA). Subsequently, it explores the performance of key generation when employing the proposed scheme. A holistic system-level framework for creating initial shared keys is presented, encompassing quantization methods such as uniform multilevel quantization (UMQ) and encoding methods such as 3-bit Gray encoding. Monte Carlo-based simulations in an indoor scenario evaluate system efficacy using metrics like Pearson correlation coefficient, bit disagreement rate (BDR), randomness, and complexity. The proposed scheme achieves a BDR lower than 0.01, a correlation coefficient greater than 0.95, and passes all National Institute of Standards and Technology (NIST) randomness tests, establishing it as a viable solution for securing wireless systems. In the context of Industry 5.0 and smart city infrastructures, where seamless communication and robust data security are paramount, the proposed SKG framework offers significant potential. With its ability to ensure secure and reliable communication, this scheme can underpin the development of advanced wireless systems that cater to the high demands of interconnected ecosystems, enhancing resilience and trust in critical applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.90
自引率
13.90%
发文量
249
期刊介绍: ransactions on Emerging Telecommunications Technologies (ETT), formerly known as European Transactions on Telecommunications (ETT), has the following aims: - to attract cutting-edge publications from leading researchers and research groups around the world - to become a highly cited source of timely research findings in emerging fields of telecommunications - to limit revision and publication cycles to a few months and thus significantly increase attractiveness to publish - to become the leading journal for publishing the latest developments in telecommunications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信