舰船管道系统传感器最优放置的可解释人工智能搜索空间缩减

IF 4.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Chungeon Kim, Hyunseok Oh, Byung Chang Jung, Seok Jun Moon, Bongtae Han
{"title":"舰船管道系统传感器最优放置的可解释人工智能搜索空间缩减","authors":"Chungeon Kim,&nbsp;Hyunseok Oh,&nbsp;Byung Chang Jung,&nbsp;Seok Jun Moon,&nbsp;Bongtae Han","doi":"10.1155/stc/8462004","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Pipeline damage in mission-critical systems, such as pipelines within naval ships, can result in substantial consequences. Compared to manual inspection of pipeline damage by crew members onboard, structural health monitoring of pipeline systems offers prompt identification of damage sites, enabling efficient damage mitigation. However, one challenge of this approach is deriving an optimal sensor placement (OSP) strategy, given the large and complex pipelines found in real-scale naval vessels. To address this issue, a search space reduction method is proposed for OSP suitable for the large and complex pipeline systems found in naval ships. In the proposed method, the original search space for sensor placement is reduced to a manageable scale using an explainable artificial intelligence (XAI) technique, namely, a gradient-weighted class activation map (Grad-CAM). Grad-CAM enables quantification and visualization of the contribution of individual pipeline nodes to classify damage scenarios. Noncritical sensor locations can be excluded from the candidate search space. Furthermore, a peak-finding algorithm is devised to select only a limited number of nodes with the highest Grad-CAM values; in this research, the algorithm is proven effective in reconstructing the search space. As a result, the original OSP problem—which has an extremely large search space—is reconstructed into a new OSP problem with a computationally manageable search space. The new OSP problem can be solved using either meta-heuristic methods or exhaustive search methods. The effectiveness of the proposed method is validated through a case study on a real-scale naval combat vessel, measuring 102 m in length and carrying a full load of 2300 tons. The results show that the proposed XAI-based search space reduction approach efficiently designs an optimal pipeline sensor network in real-scale naval combat vessels.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2025 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/8462004","citationCount":"0","resultStr":"{\"title\":\"Explainable Artificial Intelligence–Based Search Space Reduction for Optimal Sensor Placement in the Pipeline Systems of Naval Ships\",\"authors\":\"Chungeon Kim,&nbsp;Hyunseok Oh,&nbsp;Byung Chang Jung,&nbsp;Seok Jun Moon,&nbsp;Bongtae Han\",\"doi\":\"10.1155/stc/8462004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Pipeline damage in mission-critical systems, such as pipelines within naval ships, can result in substantial consequences. Compared to manual inspection of pipeline damage by crew members onboard, structural health monitoring of pipeline systems offers prompt identification of damage sites, enabling efficient damage mitigation. However, one challenge of this approach is deriving an optimal sensor placement (OSP) strategy, given the large and complex pipelines found in real-scale naval vessels. To address this issue, a search space reduction method is proposed for OSP suitable for the large and complex pipeline systems found in naval ships. In the proposed method, the original search space for sensor placement is reduced to a manageable scale using an explainable artificial intelligence (XAI) technique, namely, a gradient-weighted class activation map (Grad-CAM). Grad-CAM enables quantification and visualization of the contribution of individual pipeline nodes to classify damage scenarios. Noncritical sensor locations can be excluded from the candidate search space. Furthermore, a peak-finding algorithm is devised to select only a limited number of nodes with the highest Grad-CAM values; in this research, the algorithm is proven effective in reconstructing the search space. As a result, the original OSP problem—which has an extremely large search space—is reconstructed into a new OSP problem with a computationally manageable search space. The new OSP problem can be solved using either meta-heuristic methods or exhaustive search methods. The effectiveness of the proposed method is validated through a case study on a real-scale naval combat vessel, measuring 102 m in length and carrying a full load of 2300 tons. The results show that the proposed XAI-based search space reduction approach efficiently designs an optimal pipeline sensor network in real-scale naval combat vessels.</p>\\n </div>\",\"PeriodicalId\":49471,\"journal\":{\"name\":\"Structural Control & Health Monitoring\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/stc/8462004\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Control & Health Monitoring\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/stc/8462004\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/stc/8462004","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

关键任务系统中的管道损坏,如海军舰艇内的管道,可能会导致严重后果。与船上工作人员手工检查管道损坏情况相比,管道系统结构健康监测可以及时识别损坏部位,从而有效地减轻损坏。然而,这种方法的一个挑战是,考虑到实际规模的海军舰艇中发现的大型和复杂的管道,如何获得最佳传感器放置(OSP)策略。针对这一问题,提出了一种适用于舰船大型复杂管道系统的搜索空间缩减方法。在提出的方法中,使用可解释的人工智能(XAI)技术,即梯度加权类激活图(Grad-CAM),将传感器放置的原始搜索空间缩减到可管理的规模。Grad-CAM可以量化和可视化各个管道节点的贡献,从而对损坏情况进行分类。非关键传感器位置可以从候选搜索空间中排除。在此基础上,设计了一种寻峰算法,只选择有限数量的具有最高梯度凸轮值的节点;在本研究中,证明了该算法在重建搜索空间方面的有效性。将原有的搜索空间极大的OSP问题重构为具有计算可管理的搜索空间的新OSP问题。新的OSP问题可以用元启发式方法或穷举搜索方法来解决。以一艘全长102米、满载2300吨的实船为例,验证了该方法的有效性。结果表明,基于xai的搜索空间约简方法能有效地设计出实际舰船中最优的管道传感器网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Explainable Artificial Intelligence–Based Search Space Reduction for Optimal Sensor Placement in the Pipeline Systems of Naval Ships

Explainable Artificial Intelligence–Based Search Space Reduction for Optimal Sensor Placement in the Pipeline Systems of Naval Ships

Pipeline damage in mission-critical systems, such as pipelines within naval ships, can result in substantial consequences. Compared to manual inspection of pipeline damage by crew members onboard, structural health monitoring of pipeline systems offers prompt identification of damage sites, enabling efficient damage mitigation. However, one challenge of this approach is deriving an optimal sensor placement (OSP) strategy, given the large and complex pipelines found in real-scale naval vessels. To address this issue, a search space reduction method is proposed for OSP suitable for the large and complex pipeline systems found in naval ships. In the proposed method, the original search space for sensor placement is reduced to a manageable scale using an explainable artificial intelligence (XAI) technique, namely, a gradient-weighted class activation map (Grad-CAM). Grad-CAM enables quantification and visualization of the contribution of individual pipeline nodes to classify damage scenarios. Noncritical sensor locations can be excluded from the candidate search space. Furthermore, a peak-finding algorithm is devised to select only a limited number of nodes with the highest Grad-CAM values; in this research, the algorithm is proven effective in reconstructing the search space. As a result, the original OSP problem—which has an extremely large search space—is reconstructed into a new OSP problem with a computationally manageable search space. The new OSP problem can be solved using either meta-heuristic methods or exhaustive search methods. The effectiveness of the proposed method is validated through a case study on a real-scale naval combat vessel, measuring 102 m in length and carrying a full load of 2300 tons. The results show that the proposed XAI-based search space reduction approach efficiently designs an optimal pipeline sensor network in real-scale naval combat vessels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structural Control & Health Monitoring
Structural Control & Health Monitoring 工程技术-工程:土木
CiteScore
9.50
自引率
13.00%
发文量
234
审稿时长
8 months
期刊介绍: The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications. Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics. Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信