一种改进的数据驱动的无模型自适应上肢助力外骨骼控制方法

IF 3.5 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Shurun Wang, Hao Tang, Zhaowu Ping, Qi Tan, Bin Wang
{"title":"一种改进的数据驱动的无模型自适应上肢助力外骨骼控制方法","authors":"Shurun Wang,&nbsp;Hao Tang,&nbsp;Zhaowu Ping,&nbsp;Qi Tan,&nbsp;Bin Wang","doi":"10.1007/s10489-025-06415-3","DOIUrl":null,"url":null,"abstract":"<div><p>The widespread application of power-assist exoskeletons in physical labor and daily activities has increased the demand for robust control strategies to address challenges in human-exoskeleton interaction. Factors such as collisions and friction introduce uncertain disturbances, making it difficult to establish an accurate human-exoskeleton interaction model, thereby limiting the applicability of current model-based control methods. To overcome these problems, this study proposes an improved data-driven model-free adaptive control method (IMFAC) for the upper extremity power-assist exoskeleton. The stability and convergence of the closed-loop system are rigorously proven. To optimize the initial conditions of IMFAC, we propose an improved snake optimizer (ISO) algorithm incorporating opposition-based learning. The proposed ISO-IMFAC method is evaluated in two scenarios: a nonlinear Hammerstein model benchmark and a physical exoskeleton platform. Experimental results demonstrate that ISO-IMFAC outperforms other popular data-driven control methods across six metrics: integrated absolute error (4.756), mean integral of time-weighted absolute error (0.457), maximum error (1.167), minimum error (0), mean error (0.032), and error standard deviation (0.169). Additionally, the ISO-IMFAC method effectively drives the exoskeleton without relying on its dynamic model. In two load-bearing experiments conducted with five subjects wearing the exoskeleton, the proposed method reduces average muscle exertion per unit time by over 50% and extended working time by more than 180%. These findings highlight the significant potential of the proposed method to enhance user endurance and reduce physical strain, paving the way for practical applications in diverse real-world scenarios. The code is released at https://github.com/Shurun-Wang/ISO-IMFAC.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 6","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved data-driven model-free adaptive control method for an upper extremity power-assist exoskeleton\",\"authors\":\"Shurun Wang,&nbsp;Hao Tang,&nbsp;Zhaowu Ping,&nbsp;Qi Tan,&nbsp;Bin Wang\",\"doi\":\"10.1007/s10489-025-06415-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The widespread application of power-assist exoskeletons in physical labor and daily activities has increased the demand for robust control strategies to address challenges in human-exoskeleton interaction. Factors such as collisions and friction introduce uncertain disturbances, making it difficult to establish an accurate human-exoskeleton interaction model, thereby limiting the applicability of current model-based control methods. To overcome these problems, this study proposes an improved data-driven model-free adaptive control method (IMFAC) for the upper extremity power-assist exoskeleton. The stability and convergence of the closed-loop system are rigorously proven. To optimize the initial conditions of IMFAC, we propose an improved snake optimizer (ISO) algorithm incorporating opposition-based learning. The proposed ISO-IMFAC method is evaluated in two scenarios: a nonlinear Hammerstein model benchmark and a physical exoskeleton platform. Experimental results demonstrate that ISO-IMFAC outperforms other popular data-driven control methods across six metrics: integrated absolute error (4.756), mean integral of time-weighted absolute error (0.457), maximum error (1.167), minimum error (0), mean error (0.032), and error standard deviation (0.169). Additionally, the ISO-IMFAC method effectively drives the exoskeleton without relying on its dynamic model. In two load-bearing experiments conducted with five subjects wearing the exoskeleton, the proposed method reduces average muscle exertion per unit time by over 50% and extended working time by more than 180%. These findings highlight the significant potential of the proposed method to enhance user endurance and reduce physical strain, paving the way for practical applications in diverse real-world scenarios. The code is released at https://github.com/Shurun-Wang/ISO-IMFAC.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 6\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-025-06415-3\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06415-3","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

动力辅助外骨骼在体力劳动和日常活动中的广泛应用增加了对强大控制策略的需求,以解决人与外骨骼相互作用的挑战。碰撞、摩擦等因素引入不确定干扰,难以建立准确的人-外骨骼相互作用模型,从而限制了当前基于模型的控制方法的适用性。为了克服这些问题,本研究提出了一种改进的数据驱动无模型自适应控制方法(IMFAC),用于上肢助力外骨骼。严格证明了闭环系统的稳定性和收敛性。为了优化IMFAC的初始条件,我们提出了一种基于对立学习的改进蛇形优化器(ISO)算法。提出的ISO-IMFAC方法在两种情况下进行了评估:非线性Hammerstein模型基准和物理外骨骼平台。实验结果表明,ISO-IMFAC在6个指标上优于其他流行的数据驱动控制方法:综合绝对误差(4.756)、时间加权绝对误差平均积分(0.457)、最大误差(1.167)、最小误差(0)、平均误差(0.032)和误差标准差(0.169)。此外,ISO-IMFAC方法可以有效地驱动外骨骼,而不依赖于其动态模型。在5名受试者佩戴外骨骼进行的两次负重实验中,所提出的方法使单位时间平均肌肉消耗减少50%以上,工作时间延长180%以上。这些发现突出了所提出的方法在增强用户耐力和减少身体压力方面的巨大潜力,为在各种现实场景中的实际应用铺平了道路。该代码发布在https://github.com/Shurun-Wang/ISO-IMFAC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved data-driven model-free adaptive control method for an upper extremity power-assist exoskeleton

The widespread application of power-assist exoskeletons in physical labor and daily activities has increased the demand for robust control strategies to address challenges in human-exoskeleton interaction. Factors such as collisions and friction introduce uncertain disturbances, making it difficult to establish an accurate human-exoskeleton interaction model, thereby limiting the applicability of current model-based control methods. To overcome these problems, this study proposes an improved data-driven model-free adaptive control method (IMFAC) for the upper extremity power-assist exoskeleton. The stability and convergence of the closed-loop system are rigorously proven. To optimize the initial conditions of IMFAC, we propose an improved snake optimizer (ISO) algorithm incorporating opposition-based learning. The proposed ISO-IMFAC method is evaluated in two scenarios: a nonlinear Hammerstein model benchmark and a physical exoskeleton platform. Experimental results demonstrate that ISO-IMFAC outperforms other popular data-driven control methods across six metrics: integrated absolute error (4.756), mean integral of time-weighted absolute error (0.457), maximum error (1.167), minimum error (0), mean error (0.032), and error standard deviation (0.169). Additionally, the ISO-IMFAC method effectively drives the exoskeleton without relying on its dynamic model. In two load-bearing experiments conducted with five subjects wearing the exoskeleton, the proposed method reduces average muscle exertion per unit time by over 50% and extended working time by more than 180%. These findings highlight the significant potential of the proposed method to enhance user endurance and reduce physical strain, paving the way for practical applications in diverse real-world scenarios. The code is released at https://github.com/Shurun-Wang/ISO-IMFAC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信