{"title":"调和拟正则映射的Zygmund定理","authors":"David Kalaj","doi":"10.1007/s13324-025-01043-z","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(K\\ge 1\\)</span>. We prove Zygmund theorem for <span>\\(K-\\)</span>quasiregular harmonic mappings in the unit disk <span>\\(\\mathbb {D}\\)</span> in the complex plane by providing a constant <i>C</i>(<i>K</i>) in the inequality </p><div><div><span>$$\\begin{aligned} \\Vert f\\Vert _{1}\\le C(K)(1+\\Vert \\textrm{Re}\\,(f)\\log ^+ |\\textrm{Re}\\, f|\\Vert _1), \\end{aligned}$$</span></div></div><p>provided that <span>\\(\\textrm{Im}\\,f(0)=0\\)</span>. Moreover for a quasiregular harmonic mapping <span>\\(f=(f_1,\\dots , f_n)\\)</span> defined in the unit ball <span>\\(\\mathbb {B}\\subset \\mathbb {R}^n\\)</span>, we prove the asymptotically sharp inequality </p><div><div><span>$$\\begin{aligned} \\Vert f\\Vert _{1}-|f(0)|\\le (n-1)K^2(\\Vert f_1\\log f_1\\Vert _1- f_1(0)\\log f_1(0)), \\end{aligned}$$</span></div></div><p>when <span>\\(K\\rightarrow 1\\)</span>, provided that <span>\\(f_1\\)</span> is positive.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 2","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zygmund theorem for harmonic quasiregular mappings\",\"authors\":\"David Kalaj\",\"doi\":\"10.1007/s13324-025-01043-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(K\\\\ge 1\\\\)</span>. We prove Zygmund theorem for <span>\\\\(K-\\\\)</span>quasiregular harmonic mappings in the unit disk <span>\\\\(\\\\mathbb {D}\\\\)</span> in the complex plane by providing a constant <i>C</i>(<i>K</i>) in the inequality </p><div><div><span>$$\\\\begin{aligned} \\\\Vert f\\\\Vert _{1}\\\\le C(K)(1+\\\\Vert \\\\textrm{Re}\\\\,(f)\\\\log ^+ |\\\\textrm{Re}\\\\, f|\\\\Vert _1), \\\\end{aligned}$$</span></div></div><p>provided that <span>\\\\(\\\\textrm{Im}\\\\,f(0)=0\\\\)</span>. Moreover for a quasiregular harmonic mapping <span>\\\\(f=(f_1,\\\\dots , f_n)\\\\)</span> defined in the unit ball <span>\\\\(\\\\mathbb {B}\\\\subset \\\\mathbb {R}^n\\\\)</span>, we prove the asymptotically sharp inequality </p><div><div><span>$$\\\\begin{aligned} \\\\Vert f\\\\Vert _{1}-|f(0)|\\\\le (n-1)K^2(\\\\Vert f_1\\\\log f_1\\\\Vert _1- f_1(0)\\\\log f_1(0)), \\\\end{aligned}$$</span></div></div><p>when <span>\\\\(K\\\\rightarrow 1\\\\)</span>, provided that <span>\\\\(f_1\\\\)</span> is positive.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"15 2\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-025-01043-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01043-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Zygmund theorem for harmonic quasiregular mappings
Let \(K\ge 1\). We prove Zygmund theorem for \(K-\)quasiregular harmonic mappings in the unit disk \(\mathbb {D}\) in the complex plane by providing a constant C(K) in the inequality
provided that \(\textrm{Im}\,f(0)=0\). Moreover for a quasiregular harmonic mapping \(f=(f_1,\dots , f_n)\) defined in the unit ball \(\mathbb {B}\subset \mathbb {R}^n\), we prove the asymptotically sharp inequality
期刊介绍:
Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.