IF 0.9 3区 数学 Q2 MATHEMATICS
Isabel Hubard, Micael Toledo
{"title":"Sparse groups need not be semisparse","authors":"Isabel Hubard,&nbsp;Micael Toledo","doi":"10.1007/s00010-024-01136-3","DOIUrl":null,"url":null,"abstract":"<div><p>In 1999 Michael Hartley showed that any abstract polytope can be constructed as a double coset poset, by means of a C-group <span>\\(\\mathcal {W}\\)</span> and a subgroup <span>\\(N \\le \\mathcal {W}\\)</span>. Subgroups <span>\\(N \\le \\mathcal {W}\\)</span> that give rise to abstract polytopes through such a construction are called <i> sparse</i>. If, further, the stabilizer of a base flag of the poset is precisely <i>N</i>, then <i>N</i> is said to be <i> semisparse</i>. In [4, Conjecture 5.2] Hartely conjectures that sparse groups are always semisparse. In this paper, we show that this conjecture is in fact false: there exist sparse groups that are not semisparse. In particular, we show that such groups are always obtained from non-faithful maniplexes that give rise to polytopes. Using this, we show that Hartely’s conjecture holds for rank 3, but we construct examples to disprove the conjecture for all ranks <span>\\(n\\ge 4\\)</span>.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"99 1","pages":"37 - 60"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00010-024-01136-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-024-01136-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

1999 年,迈克尔-哈特利(Michael Hartley)证明了任何抽象多面体都可以通过一个 C 群 \(\mathcal {W}\)和一个子群 \(N \le \mathcal {W}\)构造成一个双 coset poset。通过这样的构造产生抽象多面体的子群 \(N\le\mathcal {W}\ 被称为稀疏。此外,如果正集的基旗的稳定子恰好是 N,那么 N 就被称为半解析。哈特利在 [4, 猜想 5.2] 中猜想稀疏群总是半解析的。在本文中,我们证明了这一猜想事实上是错误的:存在不是半解析的稀疏群。特别是,我们证明了这种群总是从产生多边形的非忠实操纵力获得的。利用这一点,我们证明哈特利的猜想在秩3时成立,但我们构造了一些例子来反证所有秩(n\ge 4\ )的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse groups need not be semisparse

In 1999 Michael Hartley showed that any abstract polytope can be constructed as a double coset poset, by means of a C-group \(\mathcal {W}\) and a subgroup \(N \le \mathcal {W}\). Subgroups \(N \le \mathcal {W}\) that give rise to abstract polytopes through such a construction are called sparse. If, further, the stabilizer of a base flag of the poset is precisely N, then N is said to be semisparse. In [4, Conjecture 5.2] Hartely conjectures that sparse groups are always semisparse. In this paper, we show that this conjecture is in fact false: there exist sparse groups that are not semisparse. In particular, we show that such groups are always obtained from non-faithful maniplexes that give rise to polytopes. Using this, we show that Hartely’s conjecture holds for rank 3, but we construct examples to disprove the conjecture for all ranks \(n\ge 4\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信