Lars Krupp, Jonas Bley, Isacco Gobbi, Alexander Geng, Sabine Müller, Sungho Suh, Ali Moghiseh, Arcesio Castaneda Medina, Valeria Bartsch, Artur Widera, Herwig Ott, Paul Lukowicz, Jakob Karolus, Maximilian Kiefer-Emmanouilidis
{"title":"在帮助学生回答量子计算问题方面,法学硕士生成的技巧可以与专家创建的技巧相媲美","authors":"Lars Krupp, Jonas Bley, Isacco Gobbi, Alexander Geng, Sabine Müller, Sungho Suh, Ali Moghiseh, Arcesio Castaneda Medina, Valeria Bartsch, Artur Widera, Herwig Ott, Paul Lukowicz, Jakob Karolus, Maximilian Kiefer-Emmanouilidis","doi":"10.1140/epjqt/s40507-025-00334-5","DOIUrl":null,"url":null,"abstract":"<div><p>Alleviating high workloads for teachers is crucial for continuous high quality education. To evaluate if Large Language Models (LLMs) can alleviate this problem in the quantum computing domain, we conducted two complementary studies exploring the use of GPT-4 to automatically generate tips for students. (1) A between-subject survey in which students (N = 46) solved four multiple-choice quantum computing questions with either the help of expert-created or LLMgenerated tips. To correct for possible biases, we additionally introduced two deception conditions. (2) Experienced educators and students (N = 23) directly compared the LLM-generated and expert-created tips. Our results show that the LLM-generated tips were significantly more helpful and pointed better towards relevant concepts while also giving away more of the answers. Furthermore, we found that participants in the first study performed significantly better in answering the quantum computing questions when given tips labeled as LLM-generated, even if they were expert-created. This points towards a placebo effect induced by the participants’ biases for LLM-generated content. Ultimately, we contribute that LLM-generated tips can be used instead of expert tips to support teaching of quantum computing basics.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00334-5","citationCount":"0","resultStr":"{\"title\":\"LLM-generated tips rival expert-created tips in helping students answer quantum-computing questions\",\"authors\":\"Lars Krupp, Jonas Bley, Isacco Gobbi, Alexander Geng, Sabine Müller, Sungho Suh, Ali Moghiseh, Arcesio Castaneda Medina, Valeria Bartsch, Artur Widera, Herwig Ott, Paul Lukowicz, Jakob Karolus, Maximilian Kiefer-Emmanouilidis\",\"doi\":\"10.1140/epjqt/s40507-025-00334-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Alleviating high workloads for teachers is crucial for continuous high quality education. To evaluate if Large Language Models (LLMs) can alleviate this problem in the quantum computing domain, we conducted two complementary studies exploring the use of GPT-4 to automatically generate tips for students. (1) A between-subject survey in which students (N = 46) solved four multiple-choice quantum computing questions with either the help of expert-created or LLMgenerated tips. To correct for possible biases, we additionally introduced two deception conditions. (2) Experienced educators and students (N = 23) directly compared the LLM-generated and expert-created tips. Our results show that the LLM-generated tips were significantly more helpful and pointed better towards relevant concepts while also giving away more of the answers. Furthermore, we found that participants in the first study performed significantly better in answering the quantum computing questions when given tips labeled as LLM-generated, even if they were expert-created. This points towards a placebo effect induced by the participants’ biases for LLM-generated content. Ultimately, we contribute that LLM-generated tips can be used instead of expert tips to support teaching of quantum computing basics.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00334-5\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-025-00334-5\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00334-5","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
LLM-generated tips rival expert-created tips in helping students answer quantum-computing questions
Alleviating high workloads for teachers is crucial for continuous high quality education. To evaluate if Large Language Models (LLMs) can alleviate this problem in the quantum computing domain, we conducted two complementary studies exploring the use of GPT-4 to automatically generate tips for students. (1) A between-subject survey in which students (N = 46) solved four multiple-choice quantum computing questions with either the help of expert-created or LLMgenerated tips. To correct for possible biases, we additionally introduced two deception conditions. (2) Experienced educators and students (N = 23) directly compared the LLM-generated and expert-created tips. Our results show that the LLM-generated tips were significantly more helpful and pointed better towards relevant concepts while also giving away more of the answers. Furthermore, we found that participants in the first study performed significantly better in answering the quantum computing questions when given tips labeled as LLM-generated, even if they were expert-created. This points towards a placebo effect induced by the participants’ biases for LLM-generated content. Ultimately, we contribute that LLM-generated tips can be used instead of expert tips to support teaching of quantum computing basics.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.