空间耦合策略及基于改进bfgs的VVC高级速率控制

IF 3.2 1区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Jiahao Zhang;Shuhua Xiong;Xiaohai He;Zeming Zhao;Hongdong Qin
{"title":"空间耦合策略及基于改进bfgs的VVC高级速率控制","authors":"Jiahao Zhang;Shuhua Xiong;Xiaohai He;Zeming Zhao;Hongdong Qin","doi":"10.1109/TBC.2024.3517167","DOIUrl":null,"url":null,"abstract":"This paper presents an advanced rate control (ARC) algorithm for Versatile Video Coding (VVC). The proposed method is based on spatial coupling strategy and improved Broyden Fletcher Goldfarb Shanno (BFGS) algorithm to achieve a high performance rate control (RC). In this paper, we address the problem that the current coding block does not fully utilise the spatial information during the encoding process. Firstly, a parameter updating strategy at the coding tree unit (CTU) level is constructed based on spatial coupling strategy. The spatial coupling strategy established the relationship between video parameters and video texture, which enables the video parameters at the CTU level to be more closely aligned with the video content. Furthermore, in order to enhance the precision of RC, we have proposed an improved BFGS algorithm to update video parameters, which utilizes the optimal search direction of the different partial differentials and sets an adaptive speed control factor. The experimental results indicate that the proposed method offers better performance compared to the default RC in VVC Test Moder (VTM) 19.0, with Bjøntegaard Delta Rate (BD-Rate) savings of 6.35%, 5.09% and 5.43% under Low Delay P, Low Delay B and Random Access configurations, respectively. Moreover, the proposed method demonstrates superior performance compared to other state-of-the-art algorithms.","PeriodicalId":13159,"journal":{"name":"IEEE Transactions on Broadcasting","volume":"71 1","pages":"111-124"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial Coupling Strategy and Improved BFGS-Based Advanced Rate Control for VVC\",\"authors\":\"Jiahao Zhang;Shuhua Xiong;Xiaohai He;Zeming Zhao;Hongdong Qin\",\"doi\":\"10.1109/TBC.2024.3517167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an advanced rate control (ARC) algorithm for Versatile Video Coding (VVC). The proposed method is based on spatial coupling strategy and improved Broyden Fletcher Goldfarb Shanno (BFGS) algorithm to achieve a high performance rate control (RC). In this paper, we address the problem that the current coding block does not fully utilise the spatial information during the encoding process. Firstly, a parameter updating strategy at the coding tree unit (CTU) level is constructed based on spatial coupling strategy. The spatial coupling strategy established the relationship between video parameters and video texture, which enables the video parameters at the CTU level to be more closely aligned with the video content. Furthermore, in order to enhance the precision of RC, we have proposed an improved BFGS algorithm to update video parameters, which utilizes the optimal search direction of the different partial differentials and sets an adaptive speed control factor. The experimental results indicate that the proposed method offers better performance compared to the default RC in VVC Test Moder (VTM) 19.0, with Bjøntegaard Delta Rate (BD-Rate) savings of 6.35%, 5.09% and 5.43% under Low Delay P, Low Delay B and Random Access configurations, respectively. Moreover, the proposed method demonstrates superior performance compared to other state-of-the-art algorithms.\",\"PeriodicalId\":13159,\"journal\":{\"name\":\"IEEE Transactions on Broadcasting\",\"volume\":\"71 1\",\"pages\":\"111-124\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Broadcasting\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10819255/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Broadcasting","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10819255/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种用于通用视频编码(VVC)的先进速率控制(ARC)算法。该方法基于空间耦合策略和改进的BFGS (Broyden Fletcher Goldfarb Shanno)算法来实现高性能的速率控制。本文解决了当前编码块在编码过程中没有充分利用空间信息的问题。首先,基于空间耦合策略构造了编码树单元(CTU)级的参数更新策略;空间耦合策略建立了视频参数与视频纹理之间的关系,使CTU级别的视频参数与视频内容更加紧密地对齐。此外,为了提高RC的精度,我们提出了一种改进的BFGS算法来更新视频参数,该算法利用不同偏微分的最优搜索方向并设置自适应速度控制因子。实验结果表明,与VVC Test Moder (VTM) 19.0中的默认RC相比,该方法具有更好的性能,在低延迟P、低延迟B和随机访问配置下,Bjøntegaard Delta Rate (BD-Rate)分别节省了6.35%、5.09%和5.43%。此外,与其他最先进的算法相比,所提出的方法表现出优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial Coupling Strategy and Improved BFGS-Based Advanced Rate Control for VVC
This paper presents an advanced rate control (ARC) algorithm for Versatile Video Coding (VVC). The proposed method is based on spatial coupling strategy and improved Broyden Fletcher Goldfarb Shanno (BFGS) algorithm to achieve a high performance rate control (RC). In this paper, we address the problem that the current coding block does not fully utilise the spatial information during the encoding process. Firstly, a parameter updating strategy at the coding tree unit (CTU) level is constructed based on spatial coupling strategy. The spatial coupling strategy established the relationship between video parameters and video texture, which enables the video parameters at the CTU level to be more closely aligned with the video content. Furthermore, in order to enhance the precision of RC, we have proposed an improved BFGS algorithm to update video parameters, which utilizes the optimal search direction of the different partial differentials and sets an adaptive speed control factor. The experimental results indicate that the proposed method offers better performance compared to the default RC in VVC Test Moder (VTM) 19.0, with Bjøntegaard Delta Rate (BD-Rate) savings of 6.35%, 5.09% and 5.43% under Low Delay P, Low Delay B and Random Access configurations, respectively. Moreover, the proposed method demonstrates superior performance compared to other state-of-the-art algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Broadcasting
IEEE Transactions on Broadcasting 工程技术-电信学
CiteScore
9.40
自引率
31.10%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The Society’s Field of Interest is “Devices, equipment, techniques and systems related to broadcast technology, including the production, distribution, transmission, and propagation aspects.” In addition to this formal FOI statement, which is used to provide guidance to the Publications Committee in the selection of content, the AdCom has further resolved that “broadcast systems includes all aspects of transmission, propagation, and reception.”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信