{"title":"用于乙醇生产的自循环乙醇发酵生物反应器的设计与重复控制","authors":"Sichen Wu, Shilin Chen, Chi Zhai","doi":"10.1016/j.jprocont.2025.103403","DOIUrl":null,"url":null,"abstract":"<div><div>With breakthrough of cellulose pretreatment and enzyme hydrolysis technology, the fermentation process itself has become the main limiting factor for bio-ethanol manufacturing. Self-cycling fermentation (SCF) is an advanced configuration that could improve cell metabolic intensity, increase productivity and downsize substrate run-away. However, the modeling and monitoring techniques are in short that might hamper the realization of the SCF apparatus in industrial scale. In this work, a rigorous ethanol fermentation model considering the respiration effect of yeast <em>S. cerevisiae</em> is established; then, superiority and stability criterions under periodic load variations are developed for the SCF configuration; afterwards, repetitive control is proposed to stabilize the state trajectories related to SCF, the control laws include adaptive adjustment mechanisms for uncertainties of the input, nonlinear estimation of the unknown influential concentration through higher order sliding mode observer, and state observers and parameter estimators used to estimate the unknown states and kinetics. Since the temperature is an important factor for an efficient operation of the process, a split ranging control framework is also developed. As a conclusion, SCF demonstrates as a potential configuration when improvements in substrate conversion and productivity is pursued, but difficulty on proper monitoring of the triggering signals (for discharge-and-refill) might hamper its application, and the proposed feedback loops could be a solution to realize SCF under various scenarios.</div></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"148 ","pages":"Article 103403"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and repetitive control of a self-cycling ethanol fermentation bioreactor for ethanol production\",\"authors\":\"Sichen Wu, Shilin Chen, Chi Zhai\",\"doi\":\"10.1016/j.jprocont.2025.103403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With breakthrough of cellulose pretreatment and enzyme hydrolysis technology, the fermentation process itself has become the main limiting factor for bio-ethanol manufacturing. Self-cycling fermentation (SCF) is an advanced configuration that could improve cell metabolic intensity, increase productivity and downsize substrate run-away. However, the modeling and monitoring techniques are in short that might hamper the realization of the SCF apparatus in industrial scale. In this work, a rigorous ethanol fermentation model considering the respiration effect of yeast <em>S. cerevisiae</em> is established; then, superiority and stability criterions under periodic load variations are developed for the SCF configuration; afterwards, repetitive control is proposed to stabilize the state trajectories related to SCF, the control laws include adaptive adjustment mechanisms for uncertainties of the input, nonlinear estimation of the unknown influential concentration through higher order sliding mode observer, and state observers and parameter estimators used to estimate the unknown states and kinetics. Since the temperature is an important factor for an efficient operation of the process, a split ranging control framework is also developed. As a conclusion, SCF demonstrates as a potential configuration when improvements in substrate conversion and productivity is pursued, but difficulty on proper monitoring of the triggering signals (for discharge-and-refill) might hamper its application, and the proposed feedback loops could be a solution to realize SCF under various scenarios.</div></div>\",\"PeriodicalId\":50079,\"journal\":{\"name\":\"Journal of Process Control\",\"volume\":\"148 \",\"pages\":\"Article 103403\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Process Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0959152425000319\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Process Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959152425000319","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Design and repetitive control of a self-cycling ethanol fermentation bioreactor for ethanol production
With breakthrough of cellulose pretreatment and enzyme hydrolysis technology, the fermentation process itself has become the main limiting factor for bio-ethanol manufacturing. Self-cycling fermentation (SCF) is an advanced configuration that could improve cell metabolic intensity, increase productivity and downsize substrate run-away. However, the modeling and monitoring techniques are in short that might hamper the realization of the SCF apparatus in industrial scale. In this work, a rigorous ethanol fermentation model considering the respiration effect of yeast S. cerevisiae is established; then, superiority and stability criterions under periodic load variations are developed for the SCF configuration; afterwards, repetitive control is proposed to stabilize the state trajectories related to SCF, the control laws include adaptive adjustment mechanisms for uncertainties of the input, nonlinear estimation of the unknown influential concentration through higher order sliding mode observer, and state observers and parameter estimators used to estimate the unknown states and kinetics. Since the temperature is an important factor for an efficient operation of the process, a split ranging control framework is also developed. As a conclusion, SCF demonstrates as a potential configuration when improvements in substrate conversion and productivity is pursued, but difficulty on proper monitoring of the triggering signals (for discharge-and-refill) might hamper its application, and the proposed feedback loops could be a solution to realize SCF under various scenarios.
期刊介绍:
This international journal covers the application of control theory, operations research, computer science and engineering principles to the solution of process control problems. In addition to the traditional chemical processing and manufacturing applications, the scope of process control problems involves a wide range of applications that includes energy processes, nano-technology, systems biology, bio-medical engineering, pharmaceutical processing technology, energy storage and conversion, smart grid, and data analytics among others.
Papers on the theory in these areas will also be accepted provided the theoretical contribution is aimed at the application and the development of process control techniques.
Topics covered include:
• Control applications• Process monitoring• Plant-wide control• Process control systems• Control techniques and algorithms• Process modelling and simulation• Design methods
Advanced design methods exclude well established and widely studied traditional design techniques such as PID tuning and its many variants. Applications in fields such as control of automotive engines, machinery and robotics are not deemed suitable unless a clear motivation for the relevance to process control is provided.