基于石墨烯等离子体谷光子晶体的不同畴壁拓扑谐振腔柔性调制

IF 2.9 3区 物理与天体物理 Q3 NANOSCIENCE & NANOTECHNOLOGY
Lei Xu , Shiqi Qiu , Bangyu Li , Shengqun Guo , Ruimin Huang , Weibin Qiu
{"title":"基于石墨烯等离子体谷光子晶体的不同畴壁拓扑谐振腔柔性调制","authors":"Lei Xu ,&nbsp;Shiqi Qiu ,&nbsp;Bangyu Li ,&nbsp;Shengqun Guo ,&nbsp;Ruimin Huang ,&nbsp;Weibin Qiu","doi":"10.1016/j.physe.2025.116225","DOIUrl":null,"url":null,"abstract":"<div><div>Topological edge states (ES) emerge at the interfaces between photonic crystals with distinct topological properties, enabling the suppression of backscattering for unidirectional transmission and exhibiting robustness against defects and disorders. In this work, we propose a flexible modulation strategy for the ES within resonators based on graphene plasmonic valley photonic crystals (VPhCs). Specifically, we initially construct four types of rhombic resonators composed by domain walls using topological valley edge states (VES), achieving localized ES optical fields at various domain walls. Subsequently, four categories of domain walls are heterogeneously integrated to form a single hexagonal resonator. The electromagnetic field distribution in the resonators is dynamically modulated by the variation of the frequency. Our results might provide opportunities for the flexible modulation of ES in graphene plasmonic VPhC resonators, offering prospects for applications in topological plasmonic lasers and high-density micro-nano photonic integration.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"170 ","pages":"Article 116225"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible modulation of topological resonator based on different domain walls based on graphene plasmonic valley photonic crystals\",\"authors\":\"Lei Xu ,&nbsp;Shiqi Qiu ,&nbsp;Bangyu Li ,&nbsp;Shengqun Guo ,&nbsp;Ruimin Huang ,&nbsp;Weibin Qiu\",\"doi\":\"10.1016/j.physe.2025.116225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Topological edge states (ES) emerge at the interfaces between photonic crystals with distinct topological properties, enabling the suppression of backscattering for unidirectional transmission and exhibiting robustness against defects and disorders. In this work, we propose a flexible modulation strategy for the ES within resonators based on graphene plasmonic valley photonic crystals (VPhCs). Specifically, we initially construct four types of rhombic resonators composed by domain walls using topological valley edge states (VES), achieving localized ES optical fields at various domain walls. Subsequently, four categories of domain walls are heterogeneously integrated to form a single hexagonal resonator. The electromagnetic field distribution in the resonators is dynamically modulated by the variation of the frequency. Our results might provide opportunities for the flexible modulation of ES in graphene plasmonic VPhC resonators, offering prospects for applications in topological plasmonic lasers and high-density micro-nano photonic integration.</div></div>\",\"PeriodicalId\":20181,\"journal\":{\"name\":\"Physica E-low-dimensional Systems & Nanostructures\",\"volume\":\"170 \",\"pages\":\"Article 116225\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica E-low-dimensional Systems & Nanostructures\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386947725000505\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947725000505","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

拓扑边缘态(ES)出现在具有不同拓扑特性的光子晶体之间的界面上,能够抑制单向传输的后向散射,并表现出对缺陷和障碍的鲁棒性。在这项工作中,我们提出了一种基于石墨烯等离子体谷光子晶体(VPhCs)的谐振腔内ES的灵活调制策略。具体而言,我们首先利用拓扑谷边态(VES)构建了四种由畴壁组成的菱形谐振腔,实现了不同畴壁的局域化ES光场。随后,四类畴壁异质集成形成一个单一的六边形谐振腔。谐振腔内的电磁场分布随频率的变化而发生动态调制。我们的研究结果可能为石墨烯等离子体VPhC谐振器中ES的柔性调制提供了机会,为拓扑等离子体激光器和高密度微纳光子集成提供了应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flexible modulation of topological resonator based on different domain walls based on graphene plasmonic valley photonic crystals
Topological edge states (ES) emerge at the interfaces between photonic crystals with distinct topological properties, enabling the suppression of backscattering for unidirectional transmission and exhibiting robustness against defects and disorders. In this work, we propose a flexible modulation strategy for the ES within resonators based on graphene plasmonic valley photonic crystals (VPhCs). Specifically, we initially construct four types of rhombic resonators composed by domain walls using topological valley edge states (VES), achieving localized ES optical fields at various domain walls. Subsequently, four categories of domain walls are heterogeneously integrated to form a single hexagonal resonator. The electromagnetic field distribution in the resonators is dynamically modulated by the variation of the frequency. Our results might provide opportunities for the flexible modulation of ES in graphene plasmonic VPhC resonators, offering prospects for applications in topological plasmonic lasers and high-density micro-nano photonic integration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
6.10%
发文量
356
审稿时长
65 days
期刊介绍: Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals. Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena. Keywords: • topological insulators/superconductors, majorana fermions, Wyel semimetals; • quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems; • layered superconductivity, low dimensional systems with superconducting proximity effect; • 2D materials such as transition metal dichalcogenides; • oxide heterostructures including ZnO, SrTiO3 etc; • carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.) • quantum wells and superlattices; • quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect; • optical- and phonons-related phenomena; • magnetic-semiconductor structures; • charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling; • ultra-fast nonlinear optical phenomena; • novel devices and applications (such as high performance sensor, solar cell, etc); • novel growth and fabrication techniques for nanostructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信