基于贝叶斯混合因子的结构损伤检测

Binbin Li , Yulong Zhang , Zihan Liao , Zhilin Xue
{"title":"基于贝叶斯混合因子的结构损伤检测","authors":"Binbin Li ,&nbsp;Yulong Zhang ,&nbsp;Zihan Liao ,&nbsp;Zhilin Xue","doi":"10.1016/j.iintel.2025.100140","DOIUrl":null,"url":null,"abstract":"<div><div>Variations of structural dynamic parameters (e.g., frequencies and damping ratios) can be caused by potential structural damages and environmental effects (e.g., temperature, humidity). It is of critical importance to distinguish them for a reliable vibration-based damage detection. A variational Bayesian mixture of factor analyzers (VB-MFA) is proposed in this paper for the probabilistic modeling of measured natural frequencies. It contains multiple factor analyzers to accommodate the nonlinear effect of environmental factors on the natural frequencies. The variational Bayes with automatic relevance determination prior empowers it to automatically determine the number of analyzers and the dimension of latent factors in each analyzer. In addition, the predictive marginal likelihood of natural frequencies is proposed as a damage index, which naturally considers the uncertainties in latent factors and estimated parameters. The method is verified in two case studies: a laboratory eight-story shear-type building model and the Z24-Bridge, both subjected to temperature variations. It shows that better performance has been achieved comparing to the conventional factor analysis and mixture of factor analyzers. The VB-MFA is capable to model the nonlinear effect of environmental effect on natural frequencies, and improves the accuracy of vibration-based structural damage detection.</div></div>","PeriodicalId":100791,"journal":{"name":"Journal of Infrastructure Intelligence and Resilience","volume":"4 2","pages":"Article 100140"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian mixture of factor analyzers for structural damage detection under varying environmental conditions\",\"authors\":\"Binbin Li ,&nbsp;Yulong Zhang ,&nbsp;Zihan Liao ,&nbsp;Zhilin Xue\",\"doi\":\"10.1016/j.iintel.2025.100140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Variations of structural dynamic parameters (e.g., frequencies and damping ratios) can be caused by potential structural damages and environmental effects (e.g., temperature, humidity). It is of critical importance to distinguish them for a reliable vibration-based damage detection. A variational Bayesian mixture of factor analyzers (VB-MFA) is proposed in this paper for the probabilistic modeling of measured natural frequencies. It contains multiple factor analyzers to accommodate the nonlinear effect of environmental factors on the natural frequencies. The variational Bayes with automatic relevance determination prior empowers it to automatically determine the number of analyzers and the dimension of latent factors in each analyzer. In addition, the predictive marginal likelihood of natural frequencies is proposed as a damage index, which naturally considers the uncertainties in latent factors and estimated parameters. The method is verified in two case studies: a laboratory eight-story shear-type building model and the Z24-Bridge, both subjected to temperature variations. It shows that better performance has been achieved comparing to the conventional factor analysis and mixture of factor analyzers. The VB-MFA is capable to model the nonlinear effect of environmental effect on natural frequencies, and improves the accuracy of vibration-based structural damage detection.</div></div>\",\"PeriodicalId\":100791,\"journal\":{\"name\":\"Journal of Infrastructure Intelligence and Resilience\",\"volume\":\"4 2\",\"pages\":\"Article 100140\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Infrastructure Intelligence and Resilience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772991525000039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infrastructure Intelligence and Resilience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772991525000039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

结构动态参数(如频率和阻尼比)的变化可能由潜在的结构损坏和环境影响(如温度、湿度)引起。区分它们对于可靠的基于振动的损伤检测至关重要。本文提出了一种变分贝叶斯混合因子分析法(VB-MFA),用于测量固有频率的概率建模。它包含多因素分析仪,以适应环境因素对固有频率的非线性影响。具有自动关联确定先验的变分贝叶斯能够自动确定分析器的数量和每个分析器中潜在因素的维度。此外,提出了固有频率的预测边际似然作为损伤指标,自然地考虑了潜在因素和估计参数的不确定性。该方法在两个案例研究中得到验证:一个实验室八层剪切式建筑模型和z24桥,两者都受到温度变化的影响。结果表明,与传统因子分析和混合因子分析相比,该方法取得了更好的性能。VB-MFA能够模拟环境对固有频率的非线性影响,提高基于振动的结构损伤检测的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian mixture of factor analyzers for structural damage detection under varying environmental conditions
Variations of structural dynamic parameters (e.g., frequencies and damping ratios) can be caused by potential structural damages and environmental effects (e.g., temperature, humidity). It is of critical importance to distinguish them for a reliable vibration-based damage detection. A variational Bayesian mixture of factor analyzers (VB-MFA) is proposed in this paper for the probabilistic modeling of measured natural frequencies. It contains multiple factor analyzers to accommodate the nonlinear effect of environmental factors on the natural frequencies. The variational Bayes with automatic relevance determination prior empowers it to automatically determine the number of analyzers and the dimension of latent factors in each analyzer. In addition, the predictive marginal likelihood of natural frequencies is proposed as a damage index, which naturally considers the uncertainties in latent factors and estimated parameters. The method is verified in two case studies: a laboratory eight-story shear-type building model and the Z24-Bridge, both subjected to temperature variations. It shows that better performance has been achieved comparing to the conventional factor analysis and mixture of factor analyzers. The VB-MFA is capable to model the nonlinear effect of environmental effect on natural frequencies, and improves the accuracy of vibration-based structural damage detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信