具有边界的4-流形的非光滑同胚

IF 1.5 1区 数学 Q1 MATHEMATICS
Daniel Galvin , Roberto Ladu
{"title":"具有边界的4-流形的非光滑同胚","authors":"Daniel Galvin ,&nbsp;Roberto Ladu","doi":"10.1016/j.aim.2025.110191","DOIUrl":null,"url":null,"abstract":"<div><div>We construct the first examples of non-smoothable self-homeomorphisms of smooth 4-manifolds with boundary that fix the boundary and act trivially on homology. As a corollary, we construct self-diffeomorphisms of 4-manifolds with boundary that fix the boundary and act trivially on homology but cannot be isotoped to any self-diffeomorphism supported in a collar of the boundary and, in particular, are not isotopic to any generalised Dehn twist.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"467 ","pages":"Article 110191"},"PeriodicalIF":1.5000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-smoothable homeomorphisms of 4-manifolds with boundary\",\"authors\":\"Daniel Galvin ,&nbsp;Roberto Ladu\",\"doi\":\"10.1016/j.aim.2025.110191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We construct the first examples of non-smoothable self-homeomorphisms of smooth 4-manifolds with boundary that fix the boundary and act trivially on homology. As a corollary, we construct self-diffeomorphisms of 4-manifolds with boundary that fix the boundary and act trivially on homology but cannot be isotoped to any self-diffeomorphism supported in a collar of the boundary and, in particular, are not isotopic to any generalised Dehn twist.</div></div>\",\"PeriodicalId\":50860,\"journal\":{\"name\":\"Advances in Mathematics\",\"volume\":\"467 \",\"pages\":\"Article 110191\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870825000891\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825000891","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

构造了具有边界的光滑4流形的非光滑自同胚的第一个例子,这些流形的边界固定且对同调起着平凡的作用。作为推论,我们构造了具有边界的4流形的自微分同构,该边界固定边界并对同构起平凡的作用,但不能同位素于边界的一个环中支持的任何自微分同构,特别是不能同位素于任何广义Dehn扭转。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-smoothable homeomorphisms of 4-manifolds with boundary
We construct the first examples of non-smoothable self-homeomorphisms of smooth 4-manifolds with boundary that fix the boundary and act trivially on homology. As a corollary, we construct self-diffeomorphisms of 4-manifolds with boundary that fix the boundary and act trivially on homology but cannot be isotoped to any self-diffeomorphism supported in a collar of the boundary and, in particular, are not isotopic to any generalised Dehn twist.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信