Oktsa Dwika Rahmashari, Wuttichai Srisodaphol
{"title":"Advanced outlier detection methods for enhancing beta regression robustness","authors":"Oktsa Dwika Rahmashari,&nbsp;Wuttichai Srisodaphol","doi":"10.1016/j.dajour.2025.100557","DOIUrl":null,"url":null,"abstract":"<div><div>Beta regression is a valuable statistical technique for modeling response variables within the standard unit interval (0, 1), where values represent rates, proportions, or probabilities. However, outliers in beta regression can severely impact parameter estimates and model performance, leading to predicted values that deviate significantly from actual observations. Detecting and managing these outliers is essential to ensure model reliability and accuracy. In this study, we propose three novel outlier detection methods: Tukey-Pearson Residual (TPR), Iterative Tukey-Pearson Residual (ITPR), and Iterative Tukey-MinMax Pearson Residual (ITMPR). These methods integrate the principles of Tukey’s boxplot with Pearson residuals, providing robust frameworks for detecting outliers in beta regression models. Extensive simulation studies and real-world data applications were conducted to evaluate their performance against existing outlier detection techniques in the literature. The results indicate that the ITPR method achieves the highest levels of precision and reliability, making it the most effective among the proposed methods. The TPR and ITMPR methods also exhibit strong performance, closely aligning with existing techniques. These findings highlight the potential of the proposed methods to enhance the robustness of beta regression analysis and its practical applications.</div></div>","PeriodicalId":100357,"journal":{"name":"Decision Analytics Journal","volume":"14 ","pages":"Article 100557"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Analytics Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277266222500013X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

贝塔回归是一种有价值的统计技术,用于在标准单位区间(0,1)内对响应变量建模,其中的值代表比率、比例或概率。然而,贝塔回归中的异常值会严重影响参数估计和模型性能,导致预测值与实际观测值严重偏离。检测和管理这些异常值对于确保模型的可靠性和准确性至关重要。在本研究中,我们提出了三种新型离群值检测方法:Tukey-Pearson Residual (TPR)、迭代 Tukey-Pearson Residual (ITPR) 和迭代 Tukey-MinMax Pearson Residual (ITMPR)。这些方法整合了图基方框图和皮尔逊残差的原理,为检测贝塔回归模型中的异常值提供了稳健的框架。我们进行了广泛的模拟研究和实际数据应用,以评估它们与文献中现有离群值检测技术的性能比较。结果表明,ITPR 方法实现了最高水平的精度和可靠性,是所提出方法中最有效的。TPR 和 ITMPR 方法也表现出很强的性能,与现有技术非常接近。这些发现凸显了所提方法在增强贝塔回归分析的稳健性及其实际应用方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced outlier detection methods for enhancing beta regression robustness
Beta regression is a valuable statistical technique for modeling response variables within the standard unit interval (0, 1), where values represent rates, proportions, or probabilities. However, outliers in beta regression can severely impact parameter estimates and model performance, leading to predicted values that deviate significantly from actual observations. Detecting and managing these outliers is essential to ensure model reliability and accuracy. In this study, we propose three novel outlier detection methods: Tukey-Pearson Residual (TPR), Iterative Tukey-Pearson Residual (ITPR), and Iterative Tukey-MinMax Pearson Residual (ITMPR). These methods integrate the principles of Tukey’s boxplot with Pearson residuals, providing robust frameworks for detecting outliers in beta regression models. Extensive simulation studies and real-world data applications were conducted to evaluate their performance against existing outlier detection techniques in the literature. The results indicate that the ITPR method achieves the highest levels of precision and reliability, making it the most effective among the proposed methods. The TPR and ITMPR methods also exhibit strong performance, closely aligning with existing techniques. These findings highlight the potential of the proposed methods to enhance the robustness of beta regression analysis and its practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信