基于ResNet模型的微震矩张量反演

Jiaqi Yan , Li Ma , Tianqi Jiang , Jing Zheng , Dewei Li , Xingzhi Teng
{"title":"基于ResNet模型的微震矩张量反演","authors":"Jiaqi Yan ,&nbsp;Li Ma ,&nbsp;Tianqi Jiang ,&nbsp;Jing Zheng ,&nbsp;Dewei Li ,&nbsp;Xingzhi Teng","doi":"10.1016/j.aiig.2025.100107","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposed a moment tensor regression prediction technology based on ResNet for microseismic events. Taking the great advantages of deep networks in classification and regression tasks, it can realize the great potential of fast and accurate inversion of microseismic moment tensors after the network trained. This ResNet-based moment tensor prediction technology, whose input is raw recordings, does not require the extraction of data features in advance. First, we tested the network using synthetic data and performed a quantitative assessment of the errors. The results demonstrate that the network exhibits high accuracy and efficiency during the prediction phase. Next, we tested the network using real microseismic data and compared the results with those from traditional inversion methods. The error in the results was relatively small compared to traditional methods. However, the network operates more efficiently without requiring manual intervention, making it highly valuable for near-real-time monitoring applications.</div></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"6 1","pages":"Article 100107"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microseismic moment tensor inversion based on ResNet model\",\"authors\":\"Jiaqi Yan ,&nbsp;Li Ma ,&nbsp;Tianqi Jiang ,&nbsp;Jing Zheng ,&nbsp;Dewei Li ,&nbsp;Xingzhi Teng\",\"doi\":\"10.1016/j.aiig.2025.100107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper proposed a moment tensor regression prediction technology based on ResNet for microseismic events. Taking the great advantages of deep networks in classification and regression tasks, it can realize the great potential of fast and accurate inversion of microseismic moment tensors after the network trained. This ResNet-based moment tensor prediction technology, whose input is raw recordings, does not require the extraction of data features in advance. First, we tested the network using synthetic data and performed a quantitative assessment of the errors. The results demonstrate that the network exhibits high accuracy and efficiency during the prediction phase. Next, we tested the network using real microseismic data and compared the results with those from traditional inversion methods. The error in the results was relatively small compared to traditional methods. However, the network operates more efficiently without requiring manual intervention, making it highly valuable for near-real-time monitoring applications.</div></div>\",\"PeriodicalId\":100124,\"journal\":{\"name\":\"Artificial Intelligence in Geosciences\",\"volume\":\"6 1\",\"pages\":\"Article 100107\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666544125000036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666544125000036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于ResNet的矩张量回归预测技术。利用深度网络在分类和回归任务上的巨大优势,可以实现网络训练后快速准确反演微震矩张量的巨大潜力。这种基于resnet的矩张量预测技术,其输入为原始记录,不需要提前提取数据特征。首先,我们使用合成数据测试了网络,并对误差进行了定量评估。结果表明,该网络在预测阶段具有较高的精度和效率。接下来,我们使用真实微震数据对网络进行了测试,并将结果与传统反演方法进行了比较。与传统方法相比,结果误差相对较小。然而,该网络在不需要人工干预的情况下更有效地运行,使其对近实时监控应用具有很高的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microseismic moment tensor inversion based on ResNet model
This paper proposed a moment tensor regression prediction technology based on ResNet for microseismic events. Taking the great advantages of deep networks in classification and regression tasks, it can realize the great potential of fast and accurate inversion of microseismic moment tensors after the network trained. This ResNet-based moment tensor prediction technology, whose input is raw recordings, does not require the extraction of data features in advance. First, we tested the network using synthetic data and performed a quantitative assessment of the errors. The results demonstrate that the network exhibits high accuracy and efficiency during the prediction phase. Next, we tested the network using real microseismic data and compared the results with those from traditional inversion methods. The error in the results was relatively small compared to traditional methods. However, the network operates more efficiently without requiring manual intervention, making it highly valuable for near-real-time monitoring applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信