基于自举法的高维非线性模型渐近细化

IF 9.9 3区 经济学 Q1 ECONOMICS
Joel L. Horowitz , Ahnaf Rafi
{"title":"基于自举法的高维非线性模型渐近细化","authors":"Joel L. Horowitz ,&nbsp;Ahnaf Rafi","doi":"10.1016/j.jeconom.2025.105977","DOIUrl":null,"url":null,"abstract":"<div><div>We consider penalized extremum estimation of a high-dimensional, possibly nonlinear model that is sparse in the sense that most of its parameters are zero but some are not. We use the SCAD penalty function, which provides model selection consistent and oracle efficient estimates under suitable conditions. However, asymptotic approximations based on the oracle model can be inaccurate with the sample sizes found in many applications. This paper gives conditions under which the bootstrap, based on estimates obtained through SCAD penalization with thresholding, provides asymptotic refinements of size <span><math><mrow><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow></math></span> for the error in the rejection (coverage) probability of a symmetric hypothesis test (confidence interval) and <span><math><mrow><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></math></span> for the error in the rejection (coverage) probability of a one-sided or equal tailed test (confidence interval). The results of Monte Carlo experiments show that the bootstrap can provide large reductions in errors in rejection and coverage probabilities. The bootstrap is consistent, though it does not necessarily provide asymptotic refinements, if some parameters are close but not equal to zero. Random-coefficients logit and probit models and nonlinear moment models are examples of models to which the procedure applies.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"249 ","pages":"Article 105977"},"PeriodicalIF":9.9000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bootstrap based asymptotic refinements for high-dimensional nonlinear models\",\"authors\":\"Joel L. Horowitz ,&nbsp;Ahnaf Rafi\",\"doi\":\"10.1016/j.jeconom.2025.105977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider penalized extremum estimation of a high-dimensional, possibly nonlinear model that is sparse in the sense that most of its parameters are zero but some are not. We use the SCAD penalty function, which provides model selection consistent and oracle efficient estimates under suitable conditions. However, asymptotic approximations based on the oracle model can be inaccurate with the sample sizes found in many applications. This paper gives conditions under which the bootstrap, based on estimates obtained through SCAD penalization with thresholding, provides asymptotic refinements of size <span><math><mrow><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><mo>)</mo></mrow></math></span> for the error in the rejection (coverage) probability of a symmetric hypothesis test (confidence interval) and <span><math><mrow><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></math></span> for the error in the rejection (coverage) probability of a one-sided or equal tailed test (confidence interval). The results of Monte Carlo experiments show that the bootstrap can provide large reductions in errors in rejection and coverage probabilities. The bootstrap is consistent, though it does not necessarily provide asymptotic refinements, if some parameters are close but not equal to zero. Random-coefficients logit and probit models and nonlinear moment models are examples of models to which the procedure applies.</div></div>\",\"PeriodicalId\":15629,\"journal\":{\"name\":\"Journal of Econometrics\",\"volume\":\"249 \",\"pages\":\"Article 105977\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304407625000314\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407625000314","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑一个高维的,可能是非线性的模型的惩罚极值估计,它是稀疏的,因为它的大多数参数是零,但有些不是。我们使用SCAD惩罚函数,在适当的条件下提供模型选择一致性和oracle高效的估计。然而,基于oracle模型的渐近近似在许多应用程序中的样本量可能是不准确的。本文给出了一些条件,在这些条件下,基于使用阈值的SCAD惩罚得到的估计,bootstrap对对称假设检验的拒绝(覆盖)概率误差(置信区间)和对单侧或等尾检验的拒绝(覆盖)概率误差(置信区间)分别提供了大小为O(n−2)和O(n−1)的渐近改进。蒙特卡罗实验结果表明,自举法可以大大降低拒绝概率和覆盖概率的误差。如果某些参数接近但不等于零,则自举是一致的,尽管它不一定提供渐近细化。随机系数logit和probit模型以及非线性矩模型是该程序适用的模型的示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bootstrap based asymptotic refinements for high-dimensional nonlinear models
We consider penalized extremum estimation of a high-dimensional, possibly nonlinear model that is sparse in the sense that most of its parameters are zero but some are not. We use the SCAD penalty function, which provides model selection consistent and oracle efficient estimates under suitable conditions. However, asymptotic approximations based on the oracle model can be inaccurate with the sample sizes found in many applications. This paper gives conditions under which the bootstrap, based on estimates obtained through SCAD penalization with thresholding, provides asymptotic refinements of size O(n2) for the error in the rejection (coverage) probability of a symmetric hypothesis test (confidence interval) and O(n1) for the error in the rejection (coverage) probability of a one-sided or equal tailed test (confidence interval). The results of Monte Carlo experiments show that the bootstrap can provide large reductions in errors in rejection and coverage probabilities. The bootstrap is consistent, though it does not necessarily provide asymptotic refinements, if some parameters are close but not equal to zero. Random-coefficients logit and probit models and nonlinear moment models are examples of models to which the procedure applies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信