通过增强基于动量的优化器的正交性来改善dnn的泛化

IF 6.9 1区 管理学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Zhixing Lu, Yuanyuan Sun, Zhihao Yang, Yuanyu Zhang, Paerhati Tulajiang, Haochen Sun, Hongfei Lin
{"title":"通过增强基于动量的优化器的正交性来改善dnn的泛化","authors":"Zhixing Lu,&nbsp;Yuanyuan Sun,&nbsp;Zhihao Yang,&nbsp;Yuanyu Zhang,&nbsp;Paerhati Tulajiang,&nbsp;Haochen Sun,&nbsp;Hongfei Lin","doi":"10.1016/j.ipm.2025.104109","DOIUrl":null,"url":null,"abstract":"<div><div>Momentum is a widely adopted technique in the deep neural network (DNN) optimization, recognized for enhancing performance. However, our analysis indicates that momentum is not always beneficial for the network. We theoretically demonstrate that increasing the orthogonality of parameter vectors significantly improves the generalization ability of some common types of DNNs, while momentum tends to reduce this orthogonality. Common DNNs include multilayer perceptrons (MLPs) convolutional neural networks (CNN), and Transformers. Our results further show that integrating normalization and residual connections into commonDNNs helps preserve orthogonality, thereby enhancing the generalization of networks optimized with momentum. Extensive experiments across MLPs, CNNs and Transformers validate our theoretical findings. Finally, we find that the parameter vectors of commonly pre-trained language models (PLMs) all maintain a better orthogonality.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"62 4","pages":"Article 104109"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving generalization in DNNs through enhanced orthogonality in momentum-based optimizers\",\"authors\":\"Zhixing Lu,&nbsp;Yuanyuan Sun,&nbsp;Zhihao Yang,&nbsp;Yuanyu Zhang,&nbsp;Paerhati Tulajiang,&nbsp;Haochen Sun,&nbsp;Hongfei Lin\",\"doi\":\"10.1016/j.ipm.2025.104109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Momentum is a widely adopted technique in the deep neural network (DNN) optimization, recognized for enhancing performance. However, our analysis indicates that momentum is not always beneficial for the network. We theoretically demonstrate that increasing the orthogonality of parameter vectors significantly improves the generalization ability of some common types of DNNs, while momentum tends to reduce this orthogonality. Common DNNs include multilayer perceptrons (MLPs) convolutional neural networks (CNN), and Transformers. Our results further show that integrating normalization and residual connections into commonDNNs helps preserve orthogonality, thereby enhancing the generalization of networks optimized with momentum. Extensive experiments across MLPs, CNNs and Transformers validate our theoretical findings. Finally, we find that the parameter vectors of commonly pre-trained language models (PLMs) all maintain a better orthogonality.</div></div>\",\"PeriodicalId\":50365,\"journal\":{\"name\":\"Information Processing & Management\",\"volume\":\"62 4\",\"pages\":\"Article 104109\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing & Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306457325000512\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457325000512","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

动量是深度神经网络(DNN)优化中广泛采用的一种技术,被认为可以提高性能。然而,我们的分析表明,动量并不总是对网络有利。我们从理论上证明,增加参数向量的正交性可以显著提高某些常见类型dnn的泛化能力,而动量倾向于降低这种正交性。常见的深度神经网络包括多层感知器(mlp)、卷积神经网络(CNN)和变压器。我们的研究结果进一步表明,将归一化和残差连接整合到commondnn中有助于保持正交性,从而增强了动量优化网络的泛化。在mlp、cnn和Transformers上进行的大量实验验证了我们的理论发现。最后,我们发现常用的预训练语言模型(PLMs)的参数向量都保持了较好的正交性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving generalization in DNNs through enhanced orthogonality in momentum-based optimizers
Momentum is a widely adopted technique in the deep neural network (DNN) optimization, recognized for enhancing performance. However, our analysis indicates that momentum is not always beneficial for the network. We theoretically demonstrate that increasing the orthogonality of parameter vectors significantly improves the generalization ability of some common types of DNNs, while momentum tends to reduce this orthogonality. Common DNNs include multilayer perceptrons (MLPs) convolutional neural networks (CNN), and Transformers. Our results further show that integrating normalization and residual connections into commonDNNs helps preserve orthogonality, thereby enhancing the generalization of networks optimized with momentum. Extensive experiments across MLPs, CNNs and Transformers validate our theoretical findings. Finally, we find that the parameter vectors of commonly pre-trained language models (PLMs) all maintain a better orthogonality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Processing & Management
Information Processing & Management 工程技术-计算机:信息系统
CiteScore
17.00
自引率
11.60%
发文量
276
审稿时长
39 days
期刊介绍: Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing. We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信