均值嵌入距离用于测试功能数据的独立性

IF 3.4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Mirosław Krzyśko , Łukasz Smaga , Jędrzej Wydra
{"title":"均值嵌入距离用于测试功能数据的独立性","authors":"Mirosław Krzyśko ,&nbsp;Łukasz Smaga ,&nbsp;Jędrzej Wydra","doi":"10.1016/j.sigpro.2025.109959","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate independence testing for functional data, which may be either univariate or multivariate. Broadly speaking, our approach involves first reducing the dimensionality of the functional data using basis expansion and then applying the distance of mean embedding - a flexible measure of independence. We enhance this method for pairwise independence by incorporating marginal aggregation, as well as asymmetric and symmetric aggregation measures, to improve test performance and adapt it to mutual independence testing. Our methods are compared with tests based on distance covariance and the Hilbert–Schmidt independence criterion. To evaluate their effectiveness, we present simulation studies and two real data examples using air pollution and chemometric data sets. The new testing procedures demonstrate favorable finite-sample properties, effectively controlling the type I error rate and exhibiting competitive power, making them viable alternatives to covariance-based tests.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"233 ","pages":"Article 109959"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distance of mean embedding for testing independence of functional data\",\"authors\":\"Mirosław Krzyśko ,&nbsp;Łukasz Smaga ,&nbsp;Jędrzej Wydra\",\"doi\":\"10.1016/j.sigpro.2025.109959\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate independence testing for functional data, which may be either univariate or multivariate. Broadly speaking, our approach involves first reducing the dimensionality of the functional data using basis expansion and then applying the distance of mean embedding - a flexible measure of independence. We enhance this method for pairwise independence by incorporating marginal aggregation, as well as asymmetric and symmetric aggregation measures, to improve test performance and adapt it to mutual independence testing. Our methods are compared with tests based on distance covariance and the Hilbert–Schmidt independence criterion. To evaluate their effectiveness, we present simulation studies and two real data examples using air pollution and chemometric data sets. The new testing procedures demonstrate favorable finite-sample properties, effectively controlling the type I error rate and exhibiting competitive power, making them viable alternatives to covariance-based tests.</div></div>\",\"PeriodicalId\":49523,\"journal\":{\"name\":\"Signal Processing\",\"volume\":\"233 \",\"pages\":\"Article 109959\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165168425000738\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168425000738","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了功能数据的独立性检验,可能是单变量的,也可能是多变量的。一般来说,我们的方法包括首先使用基展开降低功能数据的维数,然后应用均值嵌入的距离-一种灵活的独立性度量。我们通过引入边缘聚合以及不对称和对称聚合措施来增强该方法的两两独立性,以提高测试性能并使其适应于相互独立性测试。我们的方法与基于距离协方差和Hilbert-Schmidt独立准则的检验进行了比较。为了评估其有效性,我们提出了模拟研究和两个使用空气污染和化学计量数据集的真实数据示例。新的测试程序显示出良好的有限样本特性,有效地控制了I型错误率,并表现出竞争力,使其成为基于协方差的测试的可行替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distance of mean embedding for testing independence of functional data
We investigate independence testing for functional data, which may be either univariate or multivariate. Broadly speaking, our approach involves first reducing the dimensionality of the functional data using basis expansion and then applying the distance of mean embedding - a flexible measure of independence. We enhance this method for pairwise independence by incorporating marginal aggregation, as well as asymmetric and symmetric aggregation measures, to improve test performance and adapt it to mutual independence testing. Our methods are compared with tests based on distance covariance and the Hilbert–Schmidt independence criterion. To evaluate their effectiveness, we present simulation studies and two real data examples using air pollution and chemometric data sets. The new testing procedures demonstrate favorable finite-sample properties, effectively controlling the type I error rate and exhibiting competitive power, making them viable alternatives to covariance-based tests.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Signal Processing
Signal Processing 工程技术-工程:电子与电气
CiteScore
9.20
自引率
9.10%
发文量
309
审稿时长
41 days
期刊介绍: Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing. Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信