纳入随机过程对InSAR时间序列中对流层湍流延迟的缓解

IF 10.6 1区 地球科学 Q1 GEOGRAPHY, PHYSICAL
Hailu Chen , Yunzhong Shen , Lei Zhang , Hongyu Liang , Tengfei Feng , Xinyou Song
{"title":"纳入随机过程对InSAR时间序列中对流层湍流延迟的缓解","authors":"Hailu Chen ,&nbsp;Yunzhong Shen ,&nbsp;Lei Zhang ,&nbsp;Hongyu Liang ,&nbsp;Tengfei Feng ,&nbsp;Xinyou Song","doi":"10.1016/j.isprsjprs.2025.02.028","DOIUrl":null,"url":null,"abstract":"<div><div>Tropospheric delays present a significant challenge to accurately mapping the Earth’s surface movements using interferometric synthetic aperture radar (InSAR). These delays are typically divided into stratified and turbulent components. While efforts have been made to address the stratified component, effectively mitigating turbulence remains an ongoing challenge. In response, this study proposes a joint model that compasses both the deterministic components and stochastic elements to account for the phases raised by turbulent delays in full InSAR time series. In the joint model, the deformation phases are parameterized by time-domain polynomial, while the turbulent delays are treated as spatially correlated stochastic variables, defined by spatial variance–covariance functions. Least Squares Collocation (LSC) and Variance-Covariance Estimation (VCE) are employed to solve this joint model, enabling simultaneous estimation of modelled deformation and turbulent mixing from full InSAR time series. The rationale is rooted in the distinct temporal dependencies of deformation and turbulent delay. Its efficacy and versatility are demonstrated using simulated and Sentinel-1 data from Hong Kong International Airport (China) and the Southern Valley of California (USA). In simulations, the root mean square error (RMSE) of the differential delays decreased from 2.4 to 0.8 cm. In the Southern Valley, comparison with 70 GPS measurements showed a 73.7 % reduction in mean RMSE, from 1.9 to 0.5 cm. These results confirm the effectiveness of this approach in mitigating tropospheric turbulence delays in the time domain.</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"222 ","pages":"Pages 186-203"},"PeriodicalIF":10.6000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigation of tropospheric turbulent delays in InSAR time series by incorporating a stochastic process\",\"authors\":\"Hailu Chen ,&nbsp;Yunzhong Shen ,&nbsp;Lei Zhang ,&nbsp;Hongyu Liang ,&nbsp;Tengfei Feng ,&nbsp;Xinyou Song\",\"doi\":\"10.1016/j.isprsjprs.2025.02.028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Tropospheric delays present a significant challenge to accurately mapping the Earth’s surface movements using interferometric synthetic aperture radar (InSAR). These delays are typically divided into stratified and turbulent components. While efforts have been made to address the stratified component, effectively mitigating turbulence remains an ongoing challenge. In response, this study proposes a joint model that compasses both the deterministic components and stochastic elements to account for the phases raised by turbulent delays in full InSAR time series. In the joint model, the deformation phases are parameterized by time-domain polynomial, while the turbulent delays are treated as spatially correlated stochastic variables, defined by spatial variance–covariance functions. Least Squares Collocation (LSC) and Variance-Covariance Estimation (VCE) are employed to solve this joint model, enabling simultaneous estimation of modelled deformation and turbulent mixing from full InSAR time series. The rationale is rooted in the distinct temporal dependencies of deformation and turbulent delay. Its efficacy and versatility are demonstrated using simulated and Sentinel-1 data from Hong Kong International Airport (China) and the Southern Valley of California (USA). In simulations, the root mean square error (RMSE) of the differential delays decreased from 2.4 to 0.8 cm. In the Southern Valley, comparison with 70 GPS measurements showed a 73.7 % reduction in mean RMSE, from 1.9 to 0.5 cm. These results confirm the effectiveness of this approach in mitigating tropospheric turbulence delays in the time domain.</div></div>\",\"PeriodicalId\":50269,\"journal\":{\"name\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"volume\":\"222 \",\"pages\":\"Pages 186-203\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924271625000863\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271625000863","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

对流层延迟对干涉合成孔径雷达(InSAR)精确测绘地表运动提出了重大挑战。这些延迟通常分为分层和湍流两部分。虽然人们已经在努力解决分层的问题,但有效地缓解湍流仍然是一个持续的挑战。作为回应,本研究提出了一个联合模型,该模型包含确定性成分和随机元素,以解释全InSAR时间序列中湍流延迟引起的相位。在联合模型中,变形阶段用时域多项式参数化,而湍流延迟作为空间相关的随机变量,用空间方差-协方差函数定义。采用最小二乘配置(LSC)和方差协方差估计(VCE)对该联合模型进行求解,实现了对全InSAR时间序列模拟变形和湍流混合的同时估计。其基本原理植根于变形和湍流延迟的明显时间依赖性。利用香港国际机场(中国)和加州南部山谷(美国)的模拟数据和Sentinel-1数据证明了其有效性和多功能性。在仿真中,差分延迟的均方根误差(RMSE)从2.4 cm降低到0.8 cm。在南部山谷,与70个GPS测量结果相比,平均RMSE降低了73.7%,从1.9厘米降至0.5厘米。这些结果证实了这种方法在时域上减轻对流层湍流延迟的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mitigation of tropospheric turbulent delays in InSAR time series by incorporating a stochastic process
Tropospheric delays present a significant challenge to accurately mapping the Earth’s surface movements using interferometric synthetic aperture radar (InSAR). These delays are typically divided into stratified and turbulent components. While efforts have been made to address the stratified component, effectively mitigating turbulence remains an ongoing challenge. In response, this study proposes a joint model that compasses both the deterministic components and stochastic elements to account for the phases raised by turbulent delays in full InSAR time series. In the joint model, the deformation phases are parameterized by time-domain polynomial, while the turbulent delays are treated as spatially correlated stochastic variables, defined by spatial variance–covariance functions. Least Squares Collocation (LSC) and Variance-Covariance Estimation (VCE) are employed to solve this joint model, enabling simultaneous estimation of modelled deformation and turbulent mixing from full InSAR time series. The rationale is rooted in the distinct temporal dependencies of deformation and turbulent delay. Its efficacy and versatility are demonstrated using simulated and Sentinel-1 data from Hong Kong International Airport (China) and the Southern Valley of California (USA). In simulations, the root mean square error (RMSE) of the differential delays decreased from 2.4 to 0.8 cm. In the Southern Valley, comparison with 70 GPS measurements showed a 73.7 % reduction in mean RMSE, from 1.9 to 0.5 cm. These results confirm the effectiveness of this approach in mitigating tropospheric turbulence delays in the time domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ISPRS Journal of Photogrammetry and Remote Sensing
ISPRS Journal of Photogrammetry and Remote Sensing 工程技术-成像科学与照相技术
CiteScore
21.00
自引率
6.30%
发文量
273
审稿时长
40 days
期刊介绍: The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive. P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields. In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信