Manu Narula , Jasraj Meena , Dinesh Kumar Vishwakarma
{"title":"联邦工作负载感知量化框架,用于数据敏感应用程序中的安全学习","authors":"Manu Narula , Jasraj Meena , Dinesh Kumar Vishwakarma","doi":"10.1016/j.future.2025.107772","DOIUrl":null,"url":null,"abstract":"<div><div>Federated Learning (FL) emerged as a leading secure, distributed learning technology based on sharing insights instead of data. The privacy-ensuring capability of FL has enabled its extensive use in Data-Sensitive Applications like healthcare and finance. However, the transmitted insights are at risk of leakage as the security of the medium cannot be guaranteed and can lead to the inference of the user data. Quantization is sometimes used to change these transmitted values to provide security but at the cost of accuracy loss in global models. Coupled with client dropouts, this increases performance loss. In this paper, we propose a Federated Workload-Aware Framework with Linear Quantization (Fed-WALQ), which layers the quantization process with an active client-selection technique based on the sustainable workload of the clients. The framework minimizes the dropout rates and compensates for the loss due to quantization. Through numerical experiments compared against traditional FL and Quantization-enabled FL over multiple datasets, the Fed-WALQ shows improvements in security over the former and accuracy over the latter. The accuracy improvement varies with the complexities of the involved datasets, while a substantial drop in straggler node percentages is seen in all cases (up to 91.8% drop).</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"168 ","pages":"Article 107772"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Federated workload-aware quantized framework for secure learning in data-sensitive applications\",\"authors\":\"Manu Narula , Jasraj Meena , Dinesh Kumar Vishwakarma\",\"doi\":\"10.1016/j.future.2025.107772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Federated Learning (FL) emerged as a leading secure, distributed learning technology based on sharing insights instead of data. The privacy-ensuring capability of FL has enabled its extensive use in Data-Sensitive Applications like healthcare and finance. However, the transmitted insights are at risk of leakage as the security of the medium cannot be guaranteed and can lead to the inference of the user data. Quantization is sometimes used to change these transmitted values to provide security but at the cost of accuracy loss in global models. Coupled with client dropouts, this increases performance loss. In this paper, we propose a Federated Workload-Aware Framework with Linear Quantization (Fed-WALQ), which layers the quantization process with an active client-selection technique based on the sustainable workload of the clients. The framework minimizes the dropout rates and compensates for the loss due to quantization. Through numerical experiments compared against traditional FL and Quantization-enabled FL over multiple datasets, the Fed-WALQ shows improvements in security over the former and accuracy over the latter. The accuracy improvement varies with the complexities of the involved datasets, while a substantial drop in straggler node percentages is seen in all cases (up to 91.8% drop).</div></div>\",\"PeriodicalId\":55132,\"journal\":{\"name\":\"Future Generation Computer Systems-The International Journal of Escience\",\"volume\":\"168 \",\"pages\":\"Article 107772\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Generation Computer Systems-The International Journal of Escience\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167739X25000676\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X25000676","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Federated workload-aware quantized framework for secure learning in data-sensitive applications
Federated Learning (FL) emerged as a leading secure, distributed learning technology based on sharing insights instead of data. The privacy-ensuring capability of FL has enabled its extensive use in Data-Sensitive Applications like healthcare and finance. However, the transmitted insights are at risk of leakage as the security of the medium cannot be guaranteed and can lead to the inference of the user data. Quantization is sometimes used to change these transmitted values to provide security but at the cost of accuracy loss in global models. Coupled with client dropouts, this increases performance loss. In this paper, we propose a Federated Workload-Aware Framework with Linear Quantization (Fed-WALQ), which layers the quantization process with an active client-selection technique based on the sustainable workload of the clients. The framework minimizes the dropout rates and compensates for the loss due to quantization. Through numerical experiments compared against traditional FL and Quantization-enabled FL over multiple datasets, the Fed-WALQ shows improvements in security over the former and accuracy over the latter. The accuracy improvement varies with the complexities of the involved datasets, while a substantial drop in straggler node percentages is seen in all cases (up to 91.8% drop).
期刊介绍:
Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications.
Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration.
Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.