不依赖光的Fe3O4-Methanosarcina etivorans生物杂交增强固氮和产甲烷

IF 15.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiao-Yu Liu, Jing-Ya Ma, Mei-Yan Liu, Jian-Lu Duan, Yue Wang, Xiao-Dong Sun, Chengcheng Ding, Li-Juan Feng, Zhen Yan and Xian-Zheng Yuan*, 
{"title":"不依赖光的Fe3O4-Methanosarcina etivorans生物杂交增强固氮和产甲烷","authors":"Xiao-Yu Liu,&nbsp;Jing-Ya Ma,&nbsp;Mei-Yan Liu,&nbsp;Jian-Lu Duan,&nbsp;Yue Wang,&nbsp;Xiao-Dong Sun,&nbsp;Chengcheng Ding,&nbsp;Li-Juan Feng,&nbsp;Zhen Yan and Xian-Zheng Yuan*,&nbsp;","doi":"10.1021/jacs.4c1725910.1021/jacs.4c17259","DOIUrl":null,"url":null,"abstract":"<p >Biohybrid systems that integrate microorganisms with nanomaterials have emerged as promising solutions for sustainable nitrogen fixation. However, key challenges, such as the dependence on light and the vulnerability of nitrogenase to oxidative damage, have limited their application. Here, we report a novel, light-independent biohybrid system integrating Fe<sub>3</sub>O<sub>4</sub> nanoparticles with <i>Methanosarcina acetivorans</i> C2A, resulting in a significant enhancement of both nitrogen fixation activity and methane production. Fe<sub>3</sub>O<sub>4</sub> nanoparticles facilitate directional electron transfer, thereby enhancing methanogenesis and nitrogenase function. Furthermore, the biohybrid system enhances adenosine triphosphate (ATP) synthesis through improved electron flow along membrane-bound electron chains, further supporting nitrogenase activity. Our findings provide a new strategy for advancing nitrogen fixation in archaea, offering an efficient and sustainable approach for biological nitrogen fixation without reliance on solar energy.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"147 9","pages":"7694–7702 7694–7702"},"PeriodicalIF":15.6000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Light-Independent Fe3O4–Methanosarcina acetivorans Biohybrid Enhances Nitrogen Fixation and Methanogenesis\",\"authors\":\"Xiao-Yu Liu,&nbsp;Jing-Ya Ma,&nbsp;Mei-Yan Liu,&nbsp;Jian-Lu Duan,&nbsp;Yue Wang,&nbsp;Xiao-Dong Sun,&nbsp;Chengcheng Ding,&nbsp;Li-Juan Feng,&nbsp;Zhen Yan and Xian-Zheng Yuan*,&nbsp;\",\"doi\":\"10.1021/jacs.4c1725910.1021/jacs.4c17259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Biohybrid systems that integrate microorganisms with nanomaterials have emerged as promising solutions for sustainable nitrogen fixation. However, key challenges, such as the dependence on light and the vulnerability of nitrogenase to oxidative damage, have limited their application. Here, we report a novel, light-independent biohybrid system integrating Fe<sub>3</sub>O<sub>4</sub> nanoparticles with <i>Methanosarcina acetivorans</i> C2A, resulting in a significant enhancement of both nitrogen fixation activity and methane production. Fe<sub>3</sub>O<sub>4</sub> nanoparticles facilitate directional electron transfer, thereby enhancing methanogenesis and nitrogenase function. Furthermore, the biohybrid system enhances adenosine triphosphate (ATP) synthesis through improved electron flow along membrane-bound electron chains, further supporting nitrogenase activity. Our findings provide a new strategy for advancing nitrogen fixation in archaea, offering an efficient and sustainable approach for biological nitrogen fixation without reliance on solar energy.</p>\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"147 9\",\"pages\":\"7694–7702 7694–7702\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2025-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/jacs.4c17259\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacs.4c17259","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

将微生物与纳米材料相结合的生物混合系统已成为可持续固氮的有前途的解决方案。然而,关键的挑战,如对光的依赖和氮酶对氧化损伤的脆弱性,限制了它们的应用。在这里,我们报道了一种新的、不依赖光的生物杂交系统,将Fe3O4纳米颗粒与甲烷藻C2A结合,显著提高了固氮活性和甲烷产量。Fe3O4纳米颗粒促进定向电子转移,从而增强甲烷生成和氮酶功能。此外,生物杂交系统通过改善膜结合电子链上的电子流来增强三磷酸腺苷(ATP)的合成,进一步支持氮酶的活性。我们的研究结果为推进古细菌固氮提供了新的策略,为不依赖太阳能的生物固氮提供了有效和可持续的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Light-Independent Fe3O4–Methanosarcina acetivorans Biohybrid Enhances Nitrogen Fixation and Methanogenesis

Light-Independent Fe3O4–Methanosarcina acetivorans Biohybrid Enhances Nitrogen Fixation and Methanogenesis

Biohybrid systems that integrate microorganisms with nanomaterials have emerged as promising solutions for sustainable nitrogen fixation. However, key challenges, such as the dependence on light and the vulnerability of nitrogenase to oxidative damage, have limited their application. Here, we report a novel, light-independent biohybrid system integrating Fe3O4 nanoparticles with Methanosarcina acetivorans C2A, resulting in a significant enhancement of both nitrogen fixation activity and methane production. Fe3O4 nanoparticles facilitate directional electron transfer, thereby enhancing methanogenesis and nitrogenase function. Furthermore, the biohybrid system enhances adenosine triphosphate (ATP) synthesis through improved electron flow along membrane-bound electron chains, further supporting nitrogenase activity. Our findings provide a new strategy for advancing nitrogen fixation in archaea, offering an efficient and sustainable approach for biological nitrogen fixation without reliance on solar energy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信