可信集贝叶斯方差变化点检测

IF 18.6
Lorenzo Cappello;Oscar Hernan Madrid Padilla
{"title":"可信集贝叶斯方差变化点检测","authors":"Lorenzo Cappello;Oscar Hernan Madrid Padilla","doi":"10.1109/TPAMI.2025.3548012","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel Bayesian approach to detect changes in the variance of a Gaussian sequence model, focusing on quantifying the uncertainty in the change point locations and providing a scalable algorithm for inference. We do that by framing the problem as a product of multiple single changes in the scale parameter. We fit the model through an iterative procedure similar to what is done for additive models. The novelty is that each iteration returns a probability distribution on time instances, which captures the uncertainty in the change point location. Leveraging a recent result in the literature, we can show that our proposal is a variational approximation of the exact model posterior distribution. We study the convergence of the algorithm and the change point localization rate. Extensive experiments in simulation studies and applications to biological data illustrate the performance of our method.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 6","pages":"4835-4852"},"PeriodicalIF":18.6000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10909625","citationCount":"0","resultStr":"{\"title\":\"Bayesian Variance Change Point Detection With Credible Sets\",\"authors\":\"Lorenzo Cappello;Oscar Hernan Madrid Padilla\",\"doi\":\"10.1109/TPAMI.2025.3548012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a novel Bayesian approach to detect changes in the variance of a Gaussian sequence model, focusing on quantifying the uncertainty in the change point locations and providing a scalable algorithm for inference. We do that by framing the problem as a product of multiple single changes in the scale parameter. We fit the model through an iterative procedure similar to what is done for additive models. The novelty is that each iteration returns a probability distribution on time instances, which captures the uncertainty in the change point location. Leveraging a recent result in the literature, we can show that our proposal is a variational approximation of the exact model posterior distribution. We study the convergence of the algorithm and the change point localization rate. Extensive experiments in simulation studies and applications to biological data illustrate the performance of our method.\",\"PeriodicalId\":94034,\"journal\":{\"name\":\"IEEE transactions on pattern analysis and machine intelligence\",\"volume\":\"47 6\",\"pages\":\"4835-4852\"},\"PeriodicalIF\":18.6000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10909625\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on pattern analysis and machine intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10909625/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10909625/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种新的贝叶斯方法来检测高斯序列模型的方差变化,重点是量化变化点位置的不确定性,并提供了一种可扩展的推理算法。我们通过将问题定义为尺度参数的多个单一变化的乘积来做到这一点。我们通过一个迭代过程拟合模型,类似于对附加模型所做的。新颖之处在于,每次迭代返回时间实例的概率分布,它捕获了变化点位置的不确定性。利用文献中最近的结果,我们可以证明我们的建议是精确模型后验分布的变分近似。研究了该算法的收敛性和变点定位率。在模拟研究和应用于生物数据的大量实验证明了我们的方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Variance Change Point Detection With Credible Sets
This paper introduces a novel Bayesian approach to detect changes in the variance of a Gaussian sequence model, focusing on quantifying the uncertainty in the change point locations and providing a scalable algorithm for inference. We do that by framing the problem as a product of multiple single changes in the scale parameter. We fit the model through an iterative procedure similar to what is done for additive models. The novelty is that each iteration returns a probability distribution on time instances, which captures the uncertainty in the change point location. Leveraging a recent result in the literature, we can show that our proposal is a variational approximation of the exact model posterior distribution. We study the convergence of the algorithm and the change point localization rate. Extensive experiments in simulation studies and applications to biological data illustrate the performance of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信