测量聚类验证数据集的有效性

IF 18.6
Hyeon Jeon;Michaël Aupetit;DongHwa Shin;Aeri Cho;Seokhyeon Park;Jinwook Seo
{"title":"测量聚类验证数据集的有效性","authors":"Hyeon Jeon;Michaël Aupetit;DongHwa Shin;Aeri Cho;Seokhyeon Park;Jinwook Seo","doi":"10.1109/TPAMI.2025.3548011","DOIUrl":null,"url":null,"abstract":"Clustering techniques are often validated using benchmark datasets where class labels are used as ground-truth clusters. However, depending on the datasets, class labels may not align with the actual data clusters, and such misalignment hampers accurate validation. Therefore, it is essential to evaluate and compare datasets regarding their cluster-label matching (CLM), i.e., how well their class labels match actual clusters. Internal validation measures (IVMs), like Silhouette, can compare CLM over different labeling of the <italic>same dataset</i>, but are not designed to do so <italic>across different datasets</i>. We thus introduce <italic>Adjusted IVMs</i> as fast and reliable methods to evaluate and compare CLM across datasets. We establish four axioms that require validation measures to be independent of data properties not related to cluster structure (e.g., dimensionality, dataset size). Then, we develop standardized protocols to convert any IVM to satisfy these axioms, and use these protocols to adjust six widely used IVMs. Quantitative experiments (1) verify the necessity and effectiveness of our protocols and (2) show that adjusted IVMs outperform the competitors, including standard IVMs, in accurately evaluating CLM both <italic>within</i> and <italic>across datasets</i>. We also show that the datasets can be filtered or improved using our method to form more reliable benchmarks for clustering validation.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 6","pages":"5045-5058"},"PeriodicalIF":18.6000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring the Validity of Clustering Validation Datasets\",\"authors\":\"Hyeon Jeon;Michaël Aupetit;DongHwa Shin;Aeri Cho;Seokhyeon Park;Jinwook Seo\",\"doi\":\"10.1109/TPAMI.2025.3548011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering techniques are often validated using benchmark datasets where class labels are used as ground-truth clusters. However, depending on the datasets, class labels may not align with the actual data clusters, and such misalignment hampers accurate validation. Therefore, it is essential to evaluate and compare datasets regarding their cluster-label matching (CLM), i.e., how well their class labels match actual clusters. Internal validation measures (IVMs), like Silhouette, can compare CLM over different labeling of the <italic>same dataset</i>, but are not designed to do so <italic>across different datasets</i>. We thus introduce <italic>Adjusted IVMs</i> as fast and reliable methods to evaluate and compare CLM across datasets. We establish four axioms that require validation measures to be independent of data properties not related to cluster structure (e.g., dimensionality, dataset size). Then, we develop standardized protocols to convert any IVM to satisfy these axioms, and use these protocols to adjust six widely used IVMs. Quantitative experiments (1) verify the necessity and effectiveness of our protocols and (2) show that adjusted IVMs outperform the competitors, including standard IVMs, in accurately evaluating CLM both <italic>within</i> and <italic>across datasets</i>. We also show that the datasets can be filtered or improved using our method to form more reliable benchmarks for clustering validation.\",\"PeriodicalId\":94034,\"journal\":{\"name\":\"IEEE transactions on pattern analysis and machine intelligence\",\"volume\":\"47 6\",\"pages\":\"5045-5058\"},\"PeriodicalIF\":18.6000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on pattern analysis and machine intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10909451/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10909451/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

聚类技术通常使用基准数据集进行验证,其中类标签用作基础真值聚类。然而,根据数据集的不同,类标签可能与实际的数据簇不一致,这种不一致妨碍了准确的验证。因此,评估和比较数据集关于它们的聚类标签匹配(CLM)是必要的,即它们的类标签与实际聚类匹配的程度。内部验证度量(ivm),如Silhouette,可以比较同一数据集的不同标签上的CLM,但不是为了跨不同数据集这样做而设计的。因此,我们引入调整后的ivm作为快速可靠的方法来评估和比较跨数据集的CLM。我们建立了四个公理,要求验证措施独立于与集群结构无关的数据属性(例如,维度,数据集大小)。然后,我们开发了标准化协议来转换任何IVM以满足这些公理,并使用这些协议来调整六个广泛使用的IVM。定量实验(1)验证了我们的协议的必要性和有效性,(2)表明调整后的ivm在准确评估数据集内和跨数据集的CLM方面优于竞争对手,包括标准ivm。我们还表明,可以使用我们的方法过滤或改进数据集,以形成更可靠的聚类验证基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measuring the Validity of Clustering Validation Datasets
Clustering techniques are often validated using benchmark datasets where class labels are used as ground-truth clusters. However, depending on the datasets, class labels may not align with the actual data clusters, and such misalignment hampers accurate validation. Therefore, it is essential to evaluate and compare datasets regarding their cluster-label matching (CLM), i.e., how well their class labels match actual clusters. Internal validation measures (IVMs), like Silhouette, can compare CLM over different labeling of the same dataset, but are not designed to do so across different datasets. We thus introduce Adjusted IVMs as fast and reliable methods to evaluate and compare CLM across datasets. We establish four axioms that require validation measures to be independent of data properties not related to cluster structure (e.g., dimensionality, dataset size). Then, we develop standardized protocols to convert any IVM to satisfy these axioms, and use these protocols to adjust six widely used IVMs. Quantitative experiments (1) verify the necessity and effectiveness of our protocols and (2) show that adjusted IVMs outperform the competitors, including standard IVMs, in accurately evaluating CLM both within and across datasets. We also show that the datasets can be filtered or improved using our method to form more reliable benchmarks for clustering validation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信