Ruili Zhao;Jun Cai;Jiangtao Luo;Junpeng Gao;Yongyi Ran
{"title":"基于需求感知的低轨卫星网络波束跳变与功率分配","authors":"Ruili Zhao;Jun Cai;Jiangtao Luo;Junpeng Gao;Yongyi Ran","doi":"10.1109/TWC.2025.3545745","DOIUrl":null,"url":null,"abstract":"Low-Earth orbit (LEO) satellites utilizing beam hopping (BH) technology offer extensive coverage, low latency, high bandwidth, and significant flexibility. However, the uneven geographical distribution and temporal variability of ground traffic demands, combined with the high mobility of LEO satellites, present significant challenges for efficient beam resource utilization. Traditional BH methods based on GEO satellites fail to address issues such as satellite interference, overlapping coverage, and mobility. This paper explores a Digital Twin (DT)-based collaborative resource allocation network for multiple LEO satellites with overlapping coverage areas. A two-tier optimization problem, focusing on load balancing and cell service fairness, is proposed to maximize throughput and minimize inter-cell service delay. The DT layer optimizes the allocation of overlapping coverage cells by designing BH patterns for each satellite, while the LEO layer optimizes power allocation for each selected service cell. At the DT layer, an Actor-Critic network is deployed on each agent, with a global critic network in the cloud center. The A3C algorithm is employed to optimize the DT layer. Concurrently, the LEO layer optimization is performed using a Multi-Agent Reinforcement Learning algorithm, where each beam functions as an independent agent. The simulation results show that this method reduces satellite load disparity by about 72.5% and decreases the average delay to 12ms. Additionally, our approach outperforms other benchmarks in terms of throughput, ensuring a better alignment between offered and requested data.","PeriodicalId":13431,"journal":{"name":"IEEE Transactions on Wireless Communications","volume":"24 6","pages":"5084-5098"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Demand-Aware Beam Hopping and Power Allocation for Load Balancing in Digital Twin Empowered LEO Satellite Networks\",\"authors\":\"Ruili Zhao;Jun Cai;Jiangtao Luo;Junpeng Gao;Yongyi Ran\",\"doi\":\"10.1109/TWC.2025.3545745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low-Earth orbit (LEO) satellites utilizing beam hopping (BH) technology offer extensive coverage, low latency, high bandwidth, and significant flexibility. However, the uneven geographical distribution and temporal variability of ground traffic demands, combined with the high mobility of LEO satellites, present significant challenges for efficient beam resource utilization. Traditional BH methods based on GEO satellites fail to address issues such as satellite interference, overlapping coverage, and mobility. This paper explores a Digital Twin (DT)-based collaborative resource allocation network for multiple LEO satellites with overlapping coverage areas. A two-tier optimization problem, focusing on load balancing and cell service fairness, is proposed to maximize throughput and minimize inter-cell service delay. The DT layer optimizes the allocation of overlapping coverage cells by designing BH patterns for each satellite, while the LEO layer optimizes power allocation for each selected service cell. At the DT layer, an Actor-Critic network is deployed on each agent, with a global critic network in the cloud center. The A3C algorithm is employed to optimize the DT layer. Concurrently, the LEO layer optimization is performed using a Multi-Agent Reinforcement Learning algorithm, where each beam functions as an independent agent. The simulation results show that this method reduces satellite load disparity by about 72.5% and decreases the average delay to 12ms. Additionally, our approach outperforms other benchmarks in terms of throughput, ensuring a better alignment between offered and requested data.\",\"PeriodicalId\":13431,\"journal\":{\"name\":\"IEEE Transactions on Wireless Communications\",\"volume\":\"24 6\",\"pages\":\"5084-5098\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Wireless Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10910071/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Wireless Communications","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10910071/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Demand-Aware Beam Hopping and Power Allocation for Load Balancing in Digital Twin Empowered LEO Satellite Networks
Low-Earth orbit (LEO) satellites utilizing beam hopping (BH) technology offer extensive coverage, low latency, high bandwidth, and significant flexibility. However, the uneven geographical distribution and temporal variability of ground traffic demands, combined with the high mobility of LEO satellites, present significant challenges for efficient beam resource utilization. Traditional BH methods based on GEO satellites fail to address issues such as satellite interference, overlapping coverage, and mobility. This paper explores a Digital Twin (DT)-based collaborative resource allocation network for multiple LEO satellites with overlapping coverage areas. A two-tier optimization problem, focusing on load balancing and cell service fairness, is proposed to maximize throughput and minimize inter-cell service delay. The DT layer optimizes the allocation of overlapping coverage cells by designing BH patterns for each satellite, while the LEO layer optimizes power allocation for each selected service cell. At the DT layer, an Actor-Critic network is deployed on each agent, with a global critic network in the cloud center. The A3C algorithm is employed to optimize the DT layer. Concurrently, the LEO layer optimization is performed using a Multi-Agent Reinforcement Learning algorithm, where each beam functions as an independent agent. The simulation results show that this method reduces satellite load disparity by about 72.5% and decreases the average delay to 12ms. Additionally, our approach outperforms other benchmarks in terms of throughput, ensuring a better alignment between offered and requested data.
期刊介绍:
The IEEE Transactions on Wireless Communications is a prestigious publication that showcases cutting-edge advancements in wireless communications. It welcomes both theoretical and practical contributions in various areas. The scope of the Transactions encompasses a wide range of topics, including modulation and coding, detection and estimation, propagation and channel characterization, and diversity techniques. The journal also emphasizes the physical and link layer communication aspects of network architectures and protocols.
The journal is open to papers on specific topics or non-traditional topics related to specific application areas. This includes simulation tools and methodologies, orthogonal frequency division multiplexing, MIMO systems, and wireless over optical technologies.
Overall, the IEEE Transactions on Wireless Communications serves as a platform for high-quality manuscripts that push the boundaries of wireless communications and contribute to advancements in the field.