IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Angelo A Casulli
{"title":"Tensorized block rational Krylov methods for tensor Sylvester equations","authors":"Angelo A Casulli","doi":"10.1093/imanum/draf001","DOIUrl":null,"url":null,"abstract":"We introduce the definition of tensorized block rational Krylov subspace and its relation with multivariate rational functions, extending the formulation of tensorized Krylov subspaces introduced in Kressner, D. & Tobler, C. (2010) Krylov subspace methods for linear systems with tensor product structure. SIAM J. Matrix Anal. Appl., 31,$1688$–$1714$. Moreover, we develop methods for the solution of tensor Sylvester equations with low multilinear or tensor train rank, based on projection onto a tensor block rational Krylov subspace. We provide a convergence analysis, some strategies for pole selection and techniques to efficiently compute the residual.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"10 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf001","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了张量块有理克雷洛夫子空间的定义及其与多元有理函数的关系,扩展了 Kressner, D. & Tobler, C. (2010) Krylov subspace methods for linear systems with tensor product structure 中介绍的张量克雷洛夫子空间的表述。SIAM J. Matrix Anal.应用,31,$1688$-$1714$。此外,我们开发了基于投影到张量块有理 Krylov 子空间的低多线性或张量列车秩的张量 Sylvester 方程求解方法。我们提供了收敛性分析、极点选择的一些策略以及有效计算残差的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tensorized block rational Krylov methods for tensor Sylvester equations
We introduce the definition of tensorized block rational Krylov subspace and its relation with multivariate rational functions, extending the formulation of tensorized Krylov subspaces introduced in Kressner, D. & Tobler, C. (2010) Krylov subspace methods for linear systems with tensor product structure. SIAM J. Matrix Anal. Appl., 31,$1688$–$1714$. Moreover, we develop methods for the solution of tensor Sylvester equations with low multilinear or tensor train rank, based on projection onto a tensor block rational Krylov subspace. We provide a convergence analysis, some strategies for pole selection and techniques to efficiently compute the residual.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信