二维非自治Reissner-Mindlin-Timoshenko板系的回拉动力学

IF 2.5 2区 数学 Q1 MATHEMATICS
Baowei Feng, Mirelson M. Freitas, Anderson J. A. Ramos, Manoel J. Dos Santos
{"title":"二维非自治Reissner-Mindlin-Timoshenko板系的回拉动力学","authors":"Baowei Feng, Mirelson M. Freitas, Anderson J. A. Ramos, Manoel J. Dos Santos","doi":"10.1007/s13540-025-00383-8","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we are concerned with 2D non-autonomous Reissner-Mindlin-Timoshenko plate systems with Laplacian damping terms and nonlinear sources terms. The global well-posedness is proved by using the theory of maximal monotone operators. And then we get the Lipschtiz stability of the solution. By establishing the existence of pullback absorbing sets and pullback asymptotic compactness of the process generated by the system, we obtain the existence of pullback attractors. The upper-semicontinuity of pullback attractors regarding the fractional exponent is also proved. It is the first time when the non-autonomous Reissner-Mindlin-Timoshenko plate systems are studied.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"22 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pullback dynamics of 2D non-autonomous Reissner-Mindlin-Timoshenko plate systems\",\"authors\":\"Baowei Feng, Mirelson M. Freitas, Anderson J. A. Ramos, Manoel J. Dos Santos\",\"doi\":\"10.1007/s13540-025-00383-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we are concerned with 2D non-autonomous Reissner-Mindlin-Timoshenko plate systems with Laplacian damping terms and nonlinear sources terms. The global well-posedness is proved by using the theory of maximal monotone operators. And then we get the Lipschtiz stability of the solution. By establishing the existence of pullback absorbing sets and pullback asymptotic compactness of the process generated by the system, we obtain the existence of pullback attractors. The upper-semicontinuity of pullback attractors regarding the fractional exponent is also proved. It is the first time when the non-autonomous Reissner-Mindlin-Timoshenko plate systems are studied.</p>\",\"PeriodicalId\":48928,\"journal\":{\"name\":\"Fractional Calculus and Applied Analysis\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Calculus and Applied Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-025-00383-8\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-025-00383-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有拉普拉斯阻尼项和非线性源项的二维非自治Reissner-Mindlin-Timoshenko板系统。利用极大单调算子理论证明了该方法的全局适定性。然后我们得到溶液的利普希兹稳定性。通过建立系统生成过程的拉回吸收集的存在性和拉回渐近紧性,得到了拉回吸引子的存在性。证明了分数指数下的回拉吸引子的上半连续性。本文首次对非自治的Reissner-Mindlin-Timoshenko平板系统进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pullback dynamics of 2D non-autonomous Reissner-Mindlin-Timoshenko plate systems

In this paper, we are concerned with 2D non-autonomous Reissner-Mindlin-Timoshenko plate systems with Laplacian damping terms and nonlinear sources terms. The global well-posedness is proved by using the theory of maximal monotone operators. And then we get the Lipschtiz stability of the solution. By establishing the existence of pullback absorbing sets and pullback asymptotic compactness of the process generated by the system, we obtain the existence of pullback attractors. The upper-semicontinuity of pullback attractors regarding the fractional exponent is also proved. It is the first time when the non-autonomous Reissner-Mindlin-Timoshenko plate systems are studied.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fractional Calculus and Applied Analysis
Fractional Calculus and Applied Analysis MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.70
自引率
16.70%
发文量
101
期刊介绍: Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信