{"title":"用单分子荧光成像电化学调节的水-空气纳米界面","authors":"Guopeng Li, Lisi Wen, Runfeng Sun and Rui Hao","doi":"10.1039/D5SC00189G","DOIUrl":null,"url":null,"abstract":"<p >Water–air nanointerfaces are essential components of multiphase electrochemical processes in various energy-related applications, including water electrolysis, hydrogen fuel cells, and CO<small><sub>2</sub></small> electrochemical reduction. Deep insights into the critical properties of the interfaces are much sought after but very challenging to obtain due to their highly dynamic, transparent, and nanoscopic nature. A new approach has been proposed for constructing stable water–air nanointerfaces using FIB-fabricated Janus nanopore electrodes. The curvature of the nanointerfaces can be controlled electrochemically, ranging from positive (nanodroplets) to negative (nanoconcaves/nanobubbles) ones. The morphologies of different nanointerfaces were fully characterized with AFM. Single-molecule collision events of charged dye molecules, recorded with fluorescence imaging, were used to probe the intrinsic properties of the nanointerfaces. A unique phenomenon of charged dye rejection was discovered for isoelectric nanointerfaces. The role of surface curvature in the collision frequency was also elucidated. We believe that using this platform could be highly beneficial for deepening our understanding of the interfaces, thus guiding the rational design of various energy-related systems.</p>","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":" 17","pages":" 7203-7214"},"PeriodicalIF":7.6000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sc/d5sc00189g?page=search","citationCount":"0","resultStr":"{\"title\":\"Imaging electrochemically regulated water–air nanointerfaces with single-molecule fluorescence†\",\"authors\":\"Guopeng Li, Lisi Wen, Runfeng Sun and Rui Hao\",\"doi\":\"10.1039/D5SC00189G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Water–air nanointerfaces are essential components of multiphase electrochemical processes in various energy-related applications, including water electrolysis, hydrogen fuel cells, and CO<small><sub>2</sub></small> electrochemical reduction. Deep insights into the critical properties of the interfaces are much sought after but very challenging to obtain due to their highly dynamic, transparent, and nanoscopic nature. A new approach has been proposed for constructing stable water–air nanointerfaces using FIB-fabricated Janus nanopore electrodes. The curvature of the nanointerfaces can be controlled electrochemically, ranging from positive (nanodroplets) to negative (nanoconcaves/nanobubbles) ones. The morphologies of different nanointerfaces were fully characterized with AFM. Single-molecule collision events of charged dye molecules, recorded with fluorescence imaging, were used to probe the intrinsic properties of the nanointerfaces. A unique phenomenon of charged dye rejection was discovered for isoelectric nanointerfaces. The role of surface curvature in the collision frequency was also elucidated. We believe that using this platform could be highly beneficial for deepening our understanding of the interfaces, thus guiding the rational design of various energy-related systems.</p>\",\"PeriodicalId\":9909,\"journal\":{\"name\":\"Chemical Science\",\"volume\":\" 17\",\"pages\":\" 7203-7214\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/sc/d5sc00189g?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/sc/d5sc00189g\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/sc/d5sc00189g","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Imaging electrochemically regulated water–air nanointerfaces with single-molecule fluorescence†
Water–air nanointerfaces are essential components of multiphase electrochemical processes in various energy-related applications, including water electrolysis, hydrogen fuel cells, and CO2 electrochemical reduction. Deep insights into the critical properties of the interfaces are much sought after but very challenging to obtain due to their highly dynamic, transparent, and nanoscopic nature. A new approach has been proposed for constructing stable water–air nanointerfaces using FIB-fabricated Janus nanopore electrodes. The curvature of the nanointerfaces can be controlled electrochemically, ranging from positive (nanodroplets) to negative (nanoconcaves/nanobubbles) ones. The morphologies of different nanointerfaces were fully characterized with AFM. Single-molecule collision events of charged dye molecules, recorded with fluorescence imaging, were used to probe the intrinsic properties of the nanointerfaces. A unique phenomenon of charged dye rejection was discovered for isoelectric nanointerfaces. The role of surface curvature in the collision frequency was also elucidated. We believe that using this platform could be highly beneficial for deepening our understanding of the interfaces, thus guiding the rational design of various energy-related systems.
期刊介绍:
Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.