基于深度学习的乳房断层合成在保乳手术中的自动肿瘤分割。

Wen-Pei Wu, Yu-Wen Chen, Hwa-Koon Wu, Dar-Ren Chen, Yu-Len Huang
{"title":"基于深度学习的乳房断层合成在保乳手术中的自动肿瘤分割。","authors":"Wen-Pei Wu, Yu-Wen Chen, Hwa-Koon Wu, Dar-Ren Chen, Yu-Len Huang","doi":"10.1007/s10278-025-01457-y","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer is one of the leading causes of cancer-related deaths among women worldwide, with approximately 2.3 million diagnoses and 685,000 deaths in 2020. Early-stage breast cancer is often managed through breast-conserving surgery (BCS) combined with radiation therapy, which aims to preserve the breast's appearance while reducing recurrence risks. This study aimed to enhance intraoperative tumor segmentation using digital breast tomosynthesis (DBT) during BCS. A deep learning model, specifically an improved U-Net architecture incorporating a convolutional block attention module (CBAM), was utilized to delineate tumor margins with high precision. The system was evaluated on 51 patient cases by comparing automated segmentation with manually delineated contours and pathological assessments. Results showed that the proposed method achieved promising accuracy, with Intersection over Union (IoU) and Dice coefficients of 0.866 and 0.928, respectively, demonstrating its potential to improve intraoperative margin assessment and surgical outcomes.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated Tumor Segmentation in Breast-Conserving Surgery Using Deep Learning on Breast Tomosynthesis.\",\"authors\":\"Wen-Pei Wu, Yu-Wen Chen, Hwa-Koon Wu, Dar-Ren Chen, Yu-Len Huang\",\"doi\":\"10.1007/s10278-025-01457-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer is one of the leading causes of cancer-related deaths among women worldwide, with approximately 2.3 million diagnoses and 685,000 deaths in 2020. Early-stage breast cancer is often managed through breast-conserving surgery (BCS) combined with radiation therapy, which aims to preserve the breast's appearance while reducing recurrence risks. This study aimed to enhance intraoperative tumor segmentation using digital breast tomosynthesis (DBT) during BCS. A deep learning model, specifically an improved U-Net architecture incorporating a convolutional block attention module (CBAM), was utilized to delineate tumor margins with high precision. The system was evaluated on 51 patient cases by comparing automated segmentation with manually delineated contours and pathological assessments. Results showed that the proposed method achieved promising accuracy, with Intersection over Union (IoU) and Dice coefficients of 0.866 and 0.928, respectively, demonstrating its potential to improve intraoperative margin assessment and surgical outcomes.</p>\",\"PeriodicalId\":516858,\"journal\":{\"name\":\"Journal of imaging informatics in medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of imaging informatics in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-025-01457-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01457-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

乳腺癌是全球妇女癌症相关死亡的主要原因之一,2020年约有230万例诊断和68.5万例死亡。早期乳腺癌通常通过保乳手术(BCS)结合放射治疗来治疗,目的是在保持乳房外观的同时降低复发的风险。本研究旨在利用数字乳腺断层合成(DBT)增强BCS术中肿瘤分割。利用深度学习模型,特别是改进的U-Net架构,结合卷积块注意模块(CBAM),以高精度描绘肿瘤边缘。通过比较自动分割与人工勾画的轮廓和病理评估,对51例患者的系统进行了评估。结果表明,该方法具有较好的准确率,IoU和Dice系数分别为0.866和0.928,显示了该方法在改善术中切缘评估和手术结果方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Tumor Segmentation in Breast-Conserving Surgery Using Deep Learning on Breast Tomosynthesis.

Breast cancer is one of the leading causes of cancer-related deaths among women worldwide, with approximately 2.3 million diagnoses and 685,000 deaths in 2020. Early-stage breast cancer is often managed through breast-conserving surgery (BCS) combined with radiation therapy, which aims to preserve the breast's appearance while reducing recurrence risks. This study aimed to enhance intraoperative tumor segmentation using digital breast tomosynthesis (DBT) during BCS. A deep learning model, specifically an improved U-Net architecture incorporating a convolutional block attention module (CBAM), was utilized to delineate tumor margins with high precision. The system was evaluated on 51 patient cases by comparing automated segmentation with manually delineated contours and pathological assessments. Results showed that the proposed method achieved promising accuracy, with Intersection over Union (IoU) and Dice coefficients of 0.866 and 0.928, respectively, demonstrating its potential to improve intraoperative margin assessment and surgical outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信