Danyi Ao, Dandan Peng, Cai He, Chunjun Ye, Weiqi Hong, Xiya Huang, Yishan Lu, Jie Shi, Yu Zhang, Jian Liu, Xiawei Wei, Yuquan Wei
{"title":"一种由JN.1刺突蛋白衍生的mRNA疫苗有望对多种出现的Omicron变体产生保护性免疫。","authors":"Danyi Ao, Dandan Peng, Cai He, Chunjun Ye, Weiqi Hong, Xiya Huang, Yishan Lu, Jie Shi, Yu Zhang, Jian Liu, Xiawei Wei, Yuquan Wei","doi":"10.1186/s43556-025-00258-7","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the declared end of the COVID-19 pandemic, SARS-CoV-2 continues to evolve, with emerging JN.1-derived subvariants (e.g., KP.2, KP.3) compromising the efficacy of current XBB.1.5-based vaccines. To address this, we developed an mRNA vaccine encoding the full-length spike protein of JN.1, incorporating GSAS and 2P mutations and encapsulated in lipid nanoparticles (LNPs). The JN.1-mRNA vaccine elicited robust humoral and cellular immune responses in mice, including high JN.1-specific IgG titers, cross-neutralizing antibodies, and increased T follicular helper (Tfh) cells, germinal center (GC) B cells, and T cell cytokines. Importantly, immunity persisted for up to six months and induced RBD-specific long-lived plasma cells. We also compared the immune responses induced by homologous and heterologous vaccination regimens, and our results demonstrated that the heterologous regimen-combining JN.1-mRNA with a recombinant protein vaccine (RBD<sub>JN.1</sub>-HR)-induced stronger responses. These findings highlight the JN.1-mRNA vaccine constitutes an effective prophylactic approach against JN.1-related variants, as it induces potent neutralizing antibody responses across all tested lineages. This enhanced immunogenicity is expected to significantly reduce hospitalization rates and mitigate post-COVID complications associated with JN.1 and KP.3 infections. This study emphasizes the need for timely vaccine updates and the adaptability of mRNA vaccines in addressing emerging pathogens, providing a framework for combating future infectious diseases. Collectively, these results offer critical insights for vaccine design and public health strategies in response to emerging SARS-CoV-2 variants.</p>","PeriodicalId":74218,"journal":{"name":"Molecular biomedicine","volume":"6 1","pages":"13"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11880457/pdf/","citationCount":"0","resultStr":"{\"title\":\"A promising mRNA vaccine derived from the JN.1 spike protein confers protective immunity against multiple emerged Omicron variants.\",\"authors\":\"Danyi Ao, Dandan Peng, Cai He, Chunjun Ye, Weiqi Hong, Xiya Huang, Yishan Lu, Jie Shi, Yu Zhang, Jian Liu, Xiawei Wei, Yuquan Wei\",\"doi\":\"10.1186/s43556-025-00258-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Despite the declared end of the COVID-19 pandemic, SARS-CoV-2 continues to evolve, with emerging JN.1-derived subvariants (e.g., KP.2, KP.3) compromising the efficacy of current XBB.1.5-based vaccines. To address this, we developed an mRNA vaccine encoding the full-length spike protein of JN.1, incorporating GSAS and 2P mutations and encapsulated in lipid nanoparticles (LNPs). The JN.1-mRNA vaccine elicited robust humoral and cellular immune responses in mice, including high JN.1-specific IgG titers, cross-neutralizing antibodies, and increased T follicular helper (Tfh) cells, germinal center (GC) B cells, and T cell cytokines. Importantly, immunity persisted for up to six months and induced RBD-specific long-lived plasma cells. We also compared the immune responses induced by homologous and heterologous vaccination regimens, and our results demonstrated that the heterologous regimen-combining JN.1-mRNA with a recombinant protein vaccine (RBD<sub>JN.1</sub>-HR)-induced stronger responses. These findings highlight the JN.1-mRNA vaccine constitutes an effective prophylactic approach against JN.1-related variants, as it induces potent neutralizing antibody responses across all tested lineages. This enhanced immunogenicity is expected to significantly reduce hospitalization rates and mitigate post-COVID complications associated with JN.1 and KP.3 infections. This study emphasizes the need for timely vaccine updates and the adaptability of mRNA vaccines in addressing emerging pathogens, providing a framework for combating future infectious diseases. Collectively, these results offer critical insights for vaccine design and public health strategies in response to emerging SARS-CoV-2 variants.</p>\",\"PeriodicalId\":74218,\"journal\":{\"name\":\"Molecular biomedicine\",\"volume\":\"6 1\",\"pages\":\"13\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11880457/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular biomedicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s43556-025-00258-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43556-025-00258-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
A promising mRNA vaccine derived from the JN.1 spike protein confers protective immunity against multiple emerged Omicron variants.
Despite the declared end of the COVID-19 pandemic, SARS-CoV-2 continues to evolve, with emerging JN.1-derived subvariants (e.g., KP.2, KP.3) compromising the efficacy of current XBB.1.5-based vaccines. To address this, we developed an mRNA vaccine encoding the full-length spike protein of JN.1, incorporating GSAS and 2P mutations and encapsulated in lipid nanoparticles (LNPs). The JN.1-mRNA vaccine elicited robust humoral and cellular immune responses in mice, including high JN.1-specific IgG titers, cross-neutralizing antibodies, and increased T follicular helper (Tfh) cells, germinal center (GC) B cells, and T cell cytokines. Importantly, immunity persisted for up to six months and induced RBD-specific long-lived plasma cells. We also compared the immune responses induced by homologous and heterologous vaccination regimens, and our results demonstrated that the heterologous regimen-combining JN.1-mRNA with a recombinant protein vaccine (RBDJN.1-HR)-induced stronger responses. These findings highlight the JN.1-mRNA vaccine constitutes an effective prophylactic approach against JN.1-related variants, as it induces potent neutralizing antibody responses across all tested lineages. This enhanced immunogenicity is expected to significantly reduce hospitalization rates and mitigate post-COVID complications associated with JN.1 and KP.3 infections. This study emphasizes the need for timely vaccine updates and the adaptability of mRNA vaccines in addressing emerging pathogens, providing a framework for combating future infectious diseases. Collectively, these results offer critical insights for vaccine design and public health strategies in response to emerging SARS-CoV-2 variants.