从公平到治愈:生物系统计算模型指南。

ArXiv Pub Date : 2025-02-21
Herbert M Sauro, Eran Agmon, Michael L Blinov, John H Gennari, Joe Hellerstein, Adel Heydarabadipour, Peter Hunter, Bartholomew E Jardine, Elebeoba May, David P Nickerson, Lucian P Smith, Gary D Bader, Frank Bergmann, Patrick M Boyle, Andreas Dräger, James R Faeder, Song Feng, Juliana Freire, Fabian Fröhlich, James A Glazier, Thomas E Gorochowski, Tomas Helikar, Stefan Hoops, Princess Imoukhuede, Sarah M Keating, Matthias Konig, Reinhard Laubenbacher, Leslie M Loew, Carlos F Lopez, William W Lytton, Andrew McCulloch, Pedro Mendes, Chris J Myers, Jerry G Myers, Lealem Mulugeta, Anna Niarakis, David D van Niekerk, Brett G Olivier, Alexander A Patrie, Ellen M Quardokus, Nicole Radde, Johann M Rohwer, Sven Sahle, James C Schaff, T J Sego, Janis Shin, Jacky L Snoep, Rajanikanth Vadigepalli, H Steve Wiley, Dagmar Waltemath, Ion Moraru
{"title":"从公平到治愈:生物系统计算模型指南。","authors":"Herbert M Sauro, Eran Agmon, Michael L Blinov, John H Gennari, Joe Hellerstein, Adel Heydarabadipour, Peter Hunter, Bartholomew E Jardine, Elebeoba May, David P Nickerson, Lucian P Smith, Gary D Bader, Frank Bergmann, Patrick M Boyle, Andreas Dräger, James R Faeder, Song Feng, Juliana Freire, Fabian Fröhlich, James A Glazier, Thomas E Gorochowski, Tomas Helikar, Stefan Hoops, Princess Imoukhuede, Sarah M Keating, Matthias Konig, Reinhard Laubenbacher, Leslie M Loew, Carlos F Lopez, William W Lytton, Andrew McCulloch, Pedro Mendes, Chris J Myers, Jerry G Myers, Lealem Mulugeta, Anna Niarakis, David D van Niekerk, Brett G Olivier, Alexander A Patrie, Ellen M Quardokus, Nicole Radde, Johann M Rohwer, Sven Sahle, James C Schaff, T J Sego, Janis Shin, Jacky L Snoep, Rajanikanth Vadigepalli, H Steve Wiley, Dagmar Waltemath, Ion Moraru","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Guidelines for managing scientific data have been established under the FAIR principles requiring that data be Findable, Accessible, Interoperable, and Reusable. In many scientific disciplines, especially computational biology, both data and <i>models</i> are key to progress. For this reason, and recognizing that such models are a very special type of \"data\", we argue that computational models, especially mechanistic models prevalent in medicine, physiology and systems biology, deserve a complementary set of guidelines. We propose the CURE principles, emphasizing that models should be Credible, Understandable, Reproducible, and Extensible. We delve into each principle, discussing verification, validation, and uncertainty quantification for model credibility; the clarity of model descriptions and annotations for understandability; adherence to standards and open science practices for reproducibility; and the use of open standards and modular code for extensibility and reuse. We outline recommended and baseline requirements for each aspect of CURE, aiming to enhance the impact and trustworthiness of computational models, particularly in biomedical applications where credibility is paramount. Our perspective underscores the need for a more disciplined approach to modeling, aligning with emerging trends such as Digital Twins and emphasizing the importance of data and modeling standards for interoperability and reuse. Finally, we emphasize that given the non-trivial effort required to implement the guidelines, the community moves to automate as many of the guidelines as possible.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11875277/pdf/","citationCount":"0","resultStr":"{\"title\":\"From FAIR to CURE: Guidelines for Computational Models of Biological Systems.\",\"authors\":\"Herbert M Sauro, Eran Agmon, Michael L Blinov, John H Gennari, Joe Hellerstein, Adel Heydarabadipour, Peter Hunter, Bartholomew E Jardine, Elebeoba May, David P Nickerson, Lucian P Smith, Gary D Bader, Frank Bergmann, Patrick M Boyle, Andreas Dräger, James R Faeder, Song Feng, Juliana Freire, Fabian Fröhlich, James A Glazier, Thomas E Gorochowski, Tomas Helikar, Stefan Hoops, Princess Imoukhuede, Sarah M Keating, Matthias Konig, Reinhard Laubenbacher, Leslie M Loew, Carlos F Lopez, William W Lytton, Andrew McCulloch, Pedro Mendes, Chris J Myers, Jerry G Myers, Lealem Mulugeta, Anna Niarakis, David D van Niekerk, Brett G Olivier, Alexander A Patrie, Ellen M Quardokus, Nicole Radde, Johann M Rohwer, Sven Sahle, James C Schaff, T J Sego, Janis Shin, Jacky L Snoep, Rajanikanth Vadigepalli, H Steve Wiley, Dagmar Waltemath, Ion Moraru\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Guidelines for managing scientific data have been established under the FAIR principles requiring that data be Findable, Accessible, Interoperable, and Reusable. In many scientific disciplines, especially computational biology, both data and <i>models</i> are key to progress. For this reason, and recognizing that such models are a very special type of \\\"data\\\", we argue that computational models, especially mechanistic models prevalent in medicine, physiology and systems biology, deserve a complementary set of guidelines. We propose the CURE principles, emphasizing that models should be Credible, Understandable, Reproducible, and Extensible. We delve into each principle, discussing verification, validation, and uncertainty quantification for model credibility; the clarity of model descriptions and annotations for understandability; adherence to standards and open science practices for reproducibility; and the use of open standards and modular code for extensibility and reuse. We outline recommended and baseline requirements for each aspect of CURE, aiming to enhance the impact and trustworthiness of computational models, particularly in biomedical applications where credibility is paramount. Our perspective underscores the need for a more disciplined approach to modeling, aligning with emerging trends such as Digital Twins and emphasizing the importance of data and modeling standards for interoperability and reuse. Finally, we emphasize that given the non-trivial effort required to implement the guidelines, the community moves to automate as many of the guidelines as possible.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11875277/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

管理科学数据的指南已经在FAIR原则下建立,要求数据是可查找的、可访问的、可互操作的和可重用的。在许多科学学科中,尤其是计算生物学,数据和模型都是进步的关键。由于这个原因,并且认识到这些模型是一种非常特殊的“数据”类型,我们认为计算模型,特别是在医学、生理学和系统生物学中流行的机制模型,应该有一套补充的指导方针。我们提出CURE原则,强调模型应该是可信的、可理解的、可复制的和可扩展的。我们深入研究了每个原则,讨论了模型可信度的验证,验证和不确定性量化;模型描述和注释的清晰性,便于理解;遵守可重复性的标准和开放科学实践;并使用开放标准和模块化代码来实现可扩展性和重用性。我们概述了CURE的每个方面的建议和基线要求,旨在提高计算模型的影响和可信度,特别是在可信度至关重要的生物医学应用中。我们的观点强调需要一种更有纪律的建模方法,与数字双胞胎等新兴趋势保持一致,并强调数据和建模标准对互操作性和重用的重要性。最后,我们强调,考虑到实现指导方针所需要的重要工作,社区将尽可能多地自动化指导方针。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From FAIR to CURE: Guidelines for Computational Models of Biological Systems.

Guidelines for managing scientific data have been established under the FAIR principles requiring that data be Findable, Accessible, Interoperable, and Reusable. In many scientific disciplines, especially computational biology, both data and models are key to progress. For this reason, and recognizing that such models are a very special type of "data", we argue that computational models, especially mechanistic models prevalent in medicine, physiology and systems biology, deserve a complementary set of guidelines. We propose the CURE principles, emphasizing that models should be Credible, Understandable, Reproducible, and Extensible. We delve into each principle, discussing verification, validation, and uncertainty quantification for model credibility; the clarity of model descriptions and annotations for understandability; adherence to standards and open science practices for reproducibility; and the use of open standards and modular code for extensibility and reuse. We outline recommended and baseline requirements for each aspect of CURE, aiming to enhance the impact and trustworthiness of computational models, particularly in biomedical applications where credibility is paramount. Our perspective underscores the need for a more disciplined approach to modeling, aligning with emerging trends such as Digital Twins and emphasizing the importance of data and modeling standards for interoperability and reuse. Finally, we emphasize that given the non-trivial effort required to implement the guidelines, the community moves to automate as many of the guidelines as possible.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信