直流电场中电容界面上的扩散电荷动力学。

ArXiv Pub Date : 2025-02-17
Shuozhen Zhao, Bhavya Balu, Zongxin Yu, Michael J Miksis, Petia M Vlahovska
{"title":"直流电场中电容界面上的扩散电荷动力学。","authors":"Shuozhen Zhao, Bhavya Balu, Zongxin Yu, Michael J Miksis, Petia M Vlahovska","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Cells and cellular organelles are encapsulated by nanometrically thin membranes whose main component is a lipid bilayer. In the presence of electric fields, the ion-impermeable lipid bilayer acts as a capacitor and supports a potential difference across the membrane. We analyze the charging dynamics of a planar membrane separating bulk solutions with different electrolyte concentrations upon the application of an applied uniform DC electric field. The membrane is modeled as a zero-thickness capacitive interface. The evolution of the electric potential and ions distributions in the bulk are solved for using the Poisson-Nernst-Planck (PNP) equations. Asymptotic solutions are derived in the limit of thin Debye layers and weak fields (compared to the thermal electric potential).</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11875280/pdf/","citationCount":"0","resultStr":"{\"title\":\"Diffuse-charge dynamics across a capacitive interface in a DC electric field.\",\"authors\":\"Shuozhen Zhao, Bhavya Balu, Zongxin Yu, Michael J Miksis, Petia M Vlahovska\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cells and cellular organelles are encapsulated by nanometrically thin membranes whose main component is a lipid bilayer. In the presence of electric fields, the ion-impermeable lipid bilayer acts as a capacitor and supports a potential difference across the membrane. We analyze the charging dynamics of a planar membrane separating bulk solutions with different electrolyte concentrations upon the application of an applied uniform DC electric field. The membrane is modeled as a zero-thickness capacitive interface. The evolution of the electric potential and ions distributions in the bulk are solved for using the Poisson-Nernst-Planck (PNP) equations. Asymptotic solutions are derived in the limit of thin Debye layers and weak fields (compared to the thermal electric potential).</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11875280/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

细胞和细胞器被纳米级的薄膜包裹,其主要成分是脂质双分子层。在电场存在的情况下,离子不渗透的脂质双分子层充当电容器并支持跨膜的电位差。本文分析了均匀直流电场作用下分离不同电解质浓度体溶液的平面膜的充电动力学。该膜被建模为零厚度电容界面。用泊松-能-普朗克(PNP)方程求解了体内电势和离子分布的演化。在薄德拜层和弱场(与热电势相比)的极限下,导出了渐近解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diffuse-charge dynamics across a capacitive interface in a DC electric field.

Cells and cellular organelles are encapsulated by nanometrically thin membranes whose main component is a lipid bilayer. In the presence of electric fields, the ion-impermeable lipid bilayer acts as a capacitor and supports a potential difference across the membrane. We analyze the charging dynamics of a planar membrane separating bulk solutions with different electrolyte concentrations upon the application of an applied uniform DC electric field. The membrane is modeled as a zero-thickness capacitive interface. The evolution of the electric potential and ions distributions in the bulk are solved for using the Poisson-Nernst-Planck (PNP) equations. Asymptotic solutions are derived in the limit of thin Debye layers and weak fields (compared to the thermal electric potential).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信