CT冠状动脉造影图像中冠状动脉的分层自动标记。

Jiangyun Li, Zhongkang Lu, Shuang Leng, Xiaohong Wang, Lohendran Baskaran, Min Sen Yew, Mark Chan, Lynette Ls Teo, Kee Yuan Ngiam, Hwee Kuan Lee, Liang Zhong, Zhiping Lin, Weimin Huang
{"title":"CT冠状动脉造影图像中冠状动脉的分层自动标记。","authors":"Jiangyun Li, Zhongkang Lu, Shuang Leng, Xiaohong Wang, Lohendran Baskaran, Min Sen Yew, Mark Chan, Lynette Ls Teo, Kee Yuan Ngiam, Hwee Kuan Lee, Liang Zhong, Zhiping Lin, Weimin Huang","doi":"10.1109/EMBC53108.2024.10782317","DOIUrl":null,"url":null,"abstract":"<p><p>The auto-labeling of coronary artery segments plays an important role in the diagnosis of cardiovascular diseases. Due to the high degree of complexity and diversity in coronary artery structures, it is still a very challenging task after many years of exploration and study. In this paper, we propose a hierarchical scheme based on PointNet++ models and new topological structural features for automatic labeling of coronary artery segments. The inputs are 3D coronary artery centerline points extracted from CTCA images, and the outputs are the correspondent label indexes. The auto-labeling scheme include two stages: first stage is to identify the three main branches, LAD(LM), LCX and RCA. After that, utilizing the topological connectivity relationship with the three main branches, the indexes of sub-branches are identified in the second stage. We evaluated our method on a private clinical dataset. Experimental results show that the proposed method has achieved a satisfactory accuracy for clinical use.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":"2024 ","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical Auto-labeling of Coronary Arteries on CT Coronary Angiography Images.\",\"authors\":\"Jiangyun Li, Zhongkang Lu, Shuang Leng, Xiaohong Wang, Lohendran Baskaran, Min Sen Yew, Mark Chan, Lynette Ls Teo, Kee Yuan Ngiam, Hwee Kuan Lee, Liang Zhong, Zhiping Lin, Weimin Huang\",\"doi\":\"10.1109/EMBC53108.2024.10782317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The auto-labeling of coronary artery segments plays an important role in the diagnosis of cardiovascular diseases. Due to the high degree of complexity and diversity in coronary artery structures, it is still a very challenging task after many years of exploration and study. In this paper, we propose a hierarchical scheme based on PointNet++ models and new topological structural features for automatic labeling of coronary artery segments. The inputs are 3D coronary artery centerline points extracted from CTCA images, and the outputs are the correspondent label indexes. The auto-labeling scheme include two stages: first stage is to identify the three main branches, LAD(LM), LCX and RCA. After that, utilizing the topological connectivity relationship with the three main branches, the indexes of sub-branches are identified in the second stage. We evaluated our method on a private clinical dataset. Experimental results show that the proposed method has achieved a satisfactory accuracy for clinical use.</p>\",\"PeriodicalId\":72237,\"journal\":{\"name\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"volume\":\"2024 \",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMBC53108.2024.10782317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC53108.2024.10782317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

冠状动脉段自动标记在心血管疾病的诊断中具有重要作用。由于冠状动脉结构的高度复杂性和多样性,经过多年的探索和研究,仍然是一项非常具有挑战性的任务。本文提出了一种基于PointNet++模型和新的拓扑结构特征的冠状动脉段自动标记分层方案。输入为从CTCA图像中提取的三维冠状动脉中心线点,输出为相应的标签指标。自动标签方案包括两个阶段:第一阶段是识别三个主要分支,LAD(LM), LCX和RCA。然后,利用与三个主分支的拓扑连通性关系,确定子分支的索引。我们在一个私人临床数据集上评估了我们的方法。实验结果表明,该方法在临床应用中取得了满意的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical Auto-labeling of Coronary Arteries on CT Coronary Angiography Images.

The auto-labeling of coronary artery segments plays an important role in the diagnosis of cardiovascular diseases. Due to the high degree of complexity and diversity in coronary artery structures, it is still a very challenging task after many years of exploration and study. In this paper, we propose a hierarchical scheme based on PointNet++ models and new topological structural features for automatic labeling of coronary artery segments. The inputs are 3D coronary artery centerline points extracted from CTCA images, and the outputs are the correspondent label indexes. The auto-labeling scheme include two stages: first stage is to identify the three main branches, LAD(LM), LCX and RCA. After that, utilizing the topological connectivity relationship with the three main branches, the indexes of sub-branches are identified in the second stage. We evaluated our method on a private clinical dataset. Experimental results show that the proposed method has achieved a satisfactory accuracy for clinical use.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信