基于深度学习的针叶树花粉粒精确分类:增强孢粉学中的物种识别。

IF 2.4 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Frontiers in Big Data Pub Date : 2025-02-14 eCollection Date: 2025-01-01 DOI:10.3389/fdata.2025.1507036
Masoud A Rostami, LeMaur Kydd, Behnaz Balmaki, Lee A Dyer, Julie M Allen
{"title":"基于深度学习的针叶树花粉粒精确分类:增强孢粉学中的物种识别。","authors":"Masoud A Rostami, LeMaur Kydd, Behnaz Balmaki, Lee A Dyer, Julie M Allen","doi":"10.3389/fdata.2025.1507036","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate identification of pollen grains from <i>Abies</i> (fir), <i>Picea</i> (spruce), and <i>Pinus</i> (pine) is an important method for reconstructing historical environments, past landscapes and understanding human-environment interactions. However, distinguishing between pollen grains of conifer genera poses challenges in palynology due to their morphological similarities. To address this identification challenge, this study leverages advanced deep learning techniques, specifically transfer learning models, which are effective in identifying similarities among detailed features. We evaluated nine different transfer learning architectures: DenseNet201, EfficientNetV2S, InceptionV3, MobileNetV2, ResNet101, ResNet50, VGG16, VGG19, and Xception. Each model was trained and validated on a dataset of images of pollen grains collected from museum specimens, mounted and imaged for training purposes. The models were assessed on various performance metrics, including accuracy, precision, recall, and F1-score across training, validation, and testing phases. Our results indicate that ResNet101 relatively outperformed other models, achieving a test accuracy of 99%, with equally high precision, recall, and F1-score. This study underscores the efficacy of transfer learning to produce models that can aid in identifications of difficult species. These models may aid conifer species classification and enhance pollen grain analysis, critical for ecological research and monitoring environmental changes.</p>","PeriodicalId":52859,"journal":{"name":"Frontiers in Big Data","volume":"8 ","pages":"1507036"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868112/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deep learning for accurate classification of conifer pollen grains: enhancing species identification in palynology.\",\"authors\":\"Masoud A Rostami, LeMaur Kydd, Behnaz Balmaki, Lee A Dyer, Julie M Allen\",\"doi\":\"10.3389/fdata.2025.1507036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate identification of pollen grains from <i>Abies</i> (fir), <i>Picea</i> (spruce), and <i>Pinus</i> (pine) is an important method for reconstructing historical environments, past landscapes and understanding human-environment interactions. However, distinguishing between pollen grains of conifer genera poses challenges in palynology due to their morphological similarities. To address this identification challenge, this study leverages advanced deep learning techniques, specifically transfer learning models, which are effective in identifying similarities among detailed features. We evaluated nine different transfer learning architectures: DenseNet201, EfficientNetV2S, InceptionV3, MobileNetV2, ResNet101, ResNet50, VGG16, VGG19, and Xception. Each model was trained and validated on a dataset of images of pollen grains collected from museum specimens, mounted and imaged for training purposes. The models were assessed on various performance metrics, including accuracy, precision, recall, and F1-score across training, validation, and testing phases. Our results indicate that ResNet101 relatively outperformed other models, achieving a test accuracy of 99%, with equally high precision, recall, and F1-score. This study underscores the efficacy of transfer learning to produce models that can aid in identifications of difficult species. These models may aid conifer species classification and enhance pollen grain analysis, critical for ecological research and monitoring environmental changes.</p>\",\"PeriodicalId\":52859,\"journal\":{\"name\":\"Frontiers in Big Data\",\"volume\":\"8 \",\"pages\":\"1507036\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868112/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Big Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fdata.2025.1507036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdata.2025.1507036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

冷杉(冷杉)、云杉(云杉)和松树(松)花粉粒的准确鉴定是重建历史环境、过去景观和理解人与环境相互作用的重要方法。然而,针叶树属花粉粒的区分由于其形态上的相似性给孢粉学带来了挑战。为了解决这一识别挑战,本研究利用了先进的深度学习技术,特别是迁移学习模型,它可以有效地识别细节特征之间的相似性。我们评估了九种不同的迁移学习架构:DenseNet201、EfficientNetV2S、InceptionV3、MobileNetV2、ResNet101、ResNet50、VGG16、VGG19和Xception。每个模型都在从博物馆标本收集的花粉颗粒图像数据集上进行训练和验证,并安装和成像用于训练目的。对模型进行了各种性能指标的评估,包括准确性、精密度、召回率和训练、验证和测试阶段的f1分数。我们的结果表明,ResNet101相对优于其他模型,达到99%的测试准确率,具有同样高的精度,召回率和f1分数。这项研究强调了迁移学习的有效性,可以产生有助于识别困难物种的模型。这些模型有助于针叶树的物种分类和花粉粒分析,对生态研究和环境变化监测具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning for accurate classification of conifer pollen grains: enhancing species identification in palynology.

Accurate identification of pollen grains from Abies (fir), Picea (spruce), and Pinus (pine) is an important method for reconstructing historical environments, past landscapes and understanding human-environment interactions. However, distinguishing between pollen grains of conifer genera poses challenges in palynology due to their morphological similarities. To address this identification challenge, this study leverages advanced deep learning techniques, specifically transfer learning models, which are effective in identifying similarities among detailed features. We evaluated nine different transfer learning architectures: DenseNet201, EfficientNetV2S, InceptionV3, MobileNetV2, ResNet101, ResNet50, VGG16, VGG19, and Xception. Each model was trained and validated on a dataset of images of pollen grains collected from museum specimens, mounted and imaged for training purposes. The models were assessed on various performance metrics, including accuracy, precision, recall, and F1-score across training, validation, and testing phases. Our results indicate that ResNet101 relatively outperformed other models, achieving a test accuracy of 99%, with equally high precision, recall, and F1-score. This study underscores the efficacy of transfer learning to produce models that can aid in identifications of difficult species. These models may aid conifer species classification and enhance pollen grain analysis, critical for ecological research and monitoring environmental changes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
3.20%
发文量
122
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信