基于概率特征聚合的入院患者早期压力损伤风险预测改进机器学习算法。

IF 2.9 3区 医学 Q2 HEALTH CARE SCIENCES & SERVICES
DIGITAL HEALTH Pub Date : 2025-03-02 eCollection Date: 2025-01-01 DOI:10.1177/20552076251323300
Shu-Chen Chang, Shu-Mei Lai, Mei-Wen Wu, Shou-Chuan Sun, Mei-Chu Chen, Chiao-Min Chen
{"title":"基于概率特征聚合的入院患者早期压力损伤风险预测改进机器学习算法。","authors":"Shu-Chen Chang, Shu-Mei Lai, Mei-Wen Wu, Shou-Chuan Sun, Mei-Chu Chen, Chiao-Min Chen","doi":"10.1177/20552076251323300","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Pressure injuries (PIs) pose a significant concern in hospital care, necessitating early and accurate prediction to mitigate adverse outcomes.</p><p><strong>Methods: </strong>The proposed approach receives multiple patients records, selects key features of discrete numerical based on their relevance to PIs, and trains a random forest (RF) machine learning (ML) algorithm to build a predictive model. Pairs of significant categorical features with high contributions to the prediction results are grouped, and the PI risk probability for each group is calculated. High-risk group probabilities are then added as new features to the original feature subset, generating a new feature subset to replace the original one, which is then used to retrain the RF model.</p><p><strong>Results: </strong>The proposed method achieved an accuracy of 83.44%, sensitivity of 84.59%, specificity of 83.42%, and an area under the curve of 0.84.</p><p><strong>Conclusion: </strong>The ML-based approach, coupled with feature aggregation, enhances predictive performance, aiding clinical teams in understanding crucial features and the model's decision-making process.</p>","PeriodicalId":51333,"journal":{"name":"DIGITAL HEALTH","volume":"11 ","pages":"20552076251323300"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873886/pdf/","citationCount":"0","resultStr":"{\"title\":\"Improving machine learning algorithm for risk of early pressure injury prediction in admission patients using probability feature aggregation.\",\"authors\":\"Shu-Chen Chang, Shu-Mei Lai, Mei-Wen Wu, Shou-Chuan Sun, Mei-Chu Chen, Chiao-Min Chen\",\"doi\":\"10.1177/20552076251323300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Pressure injuries (PIs) pose a significant concern in hospital care, necessitating early and accurate prediction to mitigate adverse outcomes.</p><p><strong>Methods: </strong>The proposed approach receives multiple patients records, selects key features of discrete numerical based on their relevance to PIs, and trains a random forest (RF) machine learning (ML) algorithm to build a predictive model. Pairs of significant categorical features with high contributions to the prediction results are grouped, and the PI risk probability for each group is calculated. High-risk group probabilities are then added as new features to the original feature subset, generating a new feature subset to replace the original one, which is then used to retrain the RF model.</p><p><strong>Results: </strong>The proposed method achieved an accuracy of 83.44%, sensitivity of 84.59%, specificity of 83.42%, and an area under the curve of 0.84.</p><p><strong>Conclusion: </strong>The ML-based approach, coupled with feature aggregation, enhances predictive performance, aiding clinical teams in understanding crucial features and the model's decision-making process.</p>\",\"PeriodicalId\":51333,\"journal\":{\"name\":\"DIGITAL HEALTH\",\"volume\":\"11 \",\"pages\":\"20552076251323300\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873886/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DIGITAL HEALTH\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/20552076251323300\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DIGITAL HEALTH","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/20552076251323300","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

目的:压伤(PIs)是医院护理的重要问题,需要早期准确预测以减轻不良后果。方法:该方法接收多个患者病历,根据离散数值与pi的相关性选择关键特征,并训练随机森林(RF)机器学习(ML)算法建立预测模型。将对预测结果贡献较大的显著分类特征对分组,计算每组的PI风险概率。然后将高风险组概率作为新特征添加到原始特征子集中,生成一个新特征子集来取代原始特征子集,然后将其用于重新训练RF模型。结果:该方法准确度为83.44%,灵敏度为84.59%,特异度为83.42%,曲线下面积为0.84。结论:基于机器学习的方法,结合特征聚合,提高了预测性能,帮助临床团队理解关键特征和模型的决策过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving machine learning algorithm for risk of early pressure injury prediction in admission patients using probability feature aggregation.

Objective: Pressure injuries (PIs) pose a significant concern in hospital care, necessitating early and accurate prediction to mitigate adverse outcomes.

Methods: The proposed approach receives multiple patients records, selects key features of discrete numerical based on their relevance to PIs, and trains a random forest (RF) machine learning (ML) algorithm to build a predictive model. Pairs of significant categorical features with high contributions to the prediction results are grouped, and the PI risk probability for each group is calculated. High-risk group probabilities are then added as new features to the original feature subset, generating a new feature subset to replace the original one, which is then used to retrain the RF model.

Results: The proposed method achieved an accuracy of 83.44%, sensitivity of 84.59%, specificity of 83.42%, and an area under the curve of 0.84.

Conclusion: The ML-based approach, coupled with feature aggregation, enhances predictive performance, aiding clinical teams in understanding crucial features and the model's decision-making process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
DIGITAL HEALTH
DIGITAL HEALTH Multiple-
CiteScore
2.90
自引率
7.70%
发文量
302
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信