{"title":"新的人工智能解释并验证了深度学习方法,以准确预测糖尿病。","authors":"Ifra Shaheen, Nadeem Javaid, Nabil Alrajeh, Yousra Asim, Syed Muhammad Abrar Akber","doi":"10.1007/s11517-025-03338-6","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes is a metabolic condition that can lead to chronic illness and organ failure if it remains untreated. Accurate detection is essential to reduce these risks at an early stage. Recent advancements in predictive models show promising results. However, these models exhibit inadequate accuracy, struggle with class imbalance, and lack interpretability of the decision-making process. To overcome these issues, we propose two novel deep models for early and accurate diabetes prediction: LeDNet (inspired by LeNet and the Dual Attention Network) and HiDenNet (influenced by the highway network and DenseNet). The models are trained using the Diabetes Health Indicators dataset, which has an inherent class imbalance problem and results in biased predictions. This imbalance is mitigated by employing the majority-weighted minority over-sampling technique. Experimental findings demonstrate that LeDNet achieves an F1-score of 85%, recall of 84%, accuracy of 85%, and precision of 86%. Similarly, HiDenNet achieves accuracy, F1-score, recall, and precision of 85%, 86%, 86%, and 86%, respectively. Both proposed models outperform the state-of-the-art deep learning (DL) models. K-fold cross-validation is applied to ensure models' stability at different data splits. Local interpretable model-agnostic explanations and Shapley additive explanations techniques are utilized to enhance interpretability and overcome the traditional black-box nature of DL models. By providing both local and global insights into feature contributions, these explainable artificial intelligence techniques provide transparency to LeDNet and HiDenNet in diabetes prediction. LeDNet and HiDenNet not only improve decision-making transparency but also enhance diabetes prediction accuracy, making them reliable tools for clinical decision-making and early diagnosis.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New AI explained and validated deep learning approaches to accurately predict diabetes.\",\"authors\":\"Ifra Shaheen, Nadeem Javaid, Nabil Alrajeh, Yousra Asim, Syed Muhammad Abrar Akber\",\"doi\":\"10.1007/s11517-025-03338-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetes is a metabolic condition that can lead to chronic illness and organ failure if it remains untreated. Accurate detection is essential to reduce these risks at an early stage. Recent advancements in predictive models show promising results. However, these models exhibit inadequate accuracy, struggle with class imbalance, and lack interpretability of the decision-making process. To overcome these issues, we propose two novel deep models for early and accurate diabetes prediction: LeDNet (inspired by LeNet and the Dual Attention Network) and HiDenNet (influenced by the highway network and DenseNet). The models are trained using the Diabetes Health Indicators dataset, which has an inherent class imbalance problem and results in biased predictions. This imbalance is mitigated by employing the majority-weighted minority over-sampling technique. Experimental findings demonstrate that LeDNet achieves an F1-score of 85%, recall of 84%, accuracy of 85%, and precision of 86%. Similarly, HiDenNet achieves accuracy, F1-score, recall, and precision of 85%, 86%, 86%, and 86%, respectively. Both proposed models outperform the state-of-the-art deep learning (DL) models. K-fold cross-validation is applied to ensure models' stability at different data splits. Local interpretable model-agnostic explanations and Shapley additive explanations techniques are utilized to enhance interpretability and overcome the traditional black-box nature of DL models. By providing both local and global insights into feature contributions, these explainable artificial intelligence techniques provide transparency to LeDNet and HiDenNet in diabetes prediction. LeDNet and HiDenNet not only improve decision-making transparency but also enhance diabetes prediction accuracy, making them reliable tools for clinical decision-making and early diagnosis.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-025-03338-6\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-025-03338-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
New AI explained and validated deep learning approaches to accurately predict diabetes.
Diabetes is a metabolic condition that can lead to chronic illness and organ failure if it remains untreated. Accurate detection is essential to reduce these risks at an early stage. Recent advancements in predictive models show promising results. However, these models exhibit inadequate accuracy, struggle with class imbalance, and lack interpretability of the decision-making process. To overcome these issues, we propose two novel deep models for early and accurate diabetes prediction: LeDNet (inspired by LeNet and the Dual Attention Network) and HiDenNet (influenced by the highway network and DenseNet). The models are trained using the Diabetes Health Indicators dataset, which has an inherent class imbalance problem and results in biased predictions. This imbalance is mitigated by employing the majority-weighted minority over-sampling technique. Experimental findings demonstrate that LeDNet achieves an F1-score of 85%, recall of 84%, accuracy of 85%, and precision of 86%. Similarly, HiDenNet achieves accuracy, F1-score, recall, and precision of 85%, 86%, 86%, and 86%, respectively. Both proposed models outperform the state-of-the-art deep learning (DL) models. K-fold cross-validation is applied to ensure models' stability at different data splits. Local interpretable model-agnostic explanations and Shapley additive explanations techniques are utilized to enhance interpretability and overcome the traditional black-box nature of DL models. By providing both local and global insights into feature contributions, these explainable artificial intelligence techniques provide transparency to LeDNet and HiDenNet in diabetes prediction. LeDNet and HiDenNet not only improve decision-making transparency but also enhance diabetes prediction accuracy, making them reliable tools for clinical decision-making and early diagnosis.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).