{"title":"电动摩托车的高级驾驶辅助集成:路面分类,重点是使用深度学习进行碎石检测。","authors":"Ranan Venancio, Vitor Filipe, Adelaide Cerveira, Lio Gonçalves","doi":"10.3389/frai.2025.1520557","DOIUrl":null,"url":null,"abstract":"<p><p>Riding a motorcycle involves risks that can be minimized through advanced sensing and response systems to assist the rider. The use of camera-collected images to monitor road conditions can aid in the development of tools designed to enhance rider safety and prevent accidents. This paper proposes a method for developing deep learning models designed to operate efficiently on embedded systems like the Raspberry Pi, facilitating real-time decisions that consider the road condition. Our research tests and compares several state-of-the-art convolutional neural network architectures, including EfficientNet and Inception, to determine which offers the best balance between inference time and accuracy. Specifically, we measured top-1 accuracy and inference time on a Raspberry Pi, identifying EfficientNetV2 as the most suitable model due to its optimal trade-off between performance and computational demand. The model's top-1 accuracy significantly outperformed other models while maintaining competitive inference speeds, making it ideal for real-time applications in traffic-dense urban settings.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"8 ","pages":"1520557"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868262/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advanced driving assistance integration in electric motorcycles: road surface classification with a focus on gravel detection using deep learning.\",\"authors\":\"Ranan Venancio, Vitor Filipe, Adelaide Cerveira, Lio Gonçalves\",\"doi\":\"10.3389/frai.2025.1520557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Riding a motorcycle involves risks that can be minimized through advanced sensing and response systems to assist the rider. The use of camera-collected images to monitor road conditions can aid in the development of tools designed to enhance rider safety and prevent accidents. This paper proposes a method for developing deep learning models designed to operate efficiently on embedded systems like the Raspberry Pi, facilitating real-time decisions that consider the road condition. Our research tests and compares several state-of-the-art convolutional neural network architectures, including EfficientNet and Inception, to determine which offers the best balance between inference time and accuracy. Specifically, we measured top-1 accuracy and inference time on a Raspberry Pi, identifying EfficientNetV2 as the most suitable model due to its optimal trade-off between performance and computational demand. The model's top-1 accuracy significantly outperformed other models while maintaining competitive inference speeds, making it ideal for real-time applications in traffic-dense urban settings.</p>\",\"PeriodicalId\":33315,\"journal\":{\"name\":\"Frontiers in Artificial Intelligence\",\"volume\":\"8 \",\"pages\":\"1520557\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868262/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frai.2025.1520557\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2025.1520557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Advanced driving assistance integration in electric motorcycles: road surface classification with a focus on gravel detection using deep learning.
Riding a motorcycle involves risks that can be minimized through advanced sensing and response systems to assist the rider. The use of camera-collected images to monitor road conditions can aid in the development of tools designed to enhance rider safety and prevent accidents. This paper proposes a method for developing deep learning models designed to operate efficiently on embedded systems like the Raspberry Pi, facilitating real-time decisions that consider the road condition. Our research tests and compares several state-of-the-art convolutional neural network architectures, including EfficientNet and Inception, to determine which offers the best balance between inference time and accuracy. Specifically, we measured top-1 accuracy and inference time on a Raspberry Pi, identifying EfficientNetV2 as the most suitable model due to its optimal trade-off between performance and computational demand. The model's top-1 accuracy significantly outperformed other models while maintaining competitive inference speeds, making it ideal for real-time applications in traffic-dense urban settings.