Martin Nägele, Christian Nöbel, Richard Santiago, Rico Zenklusen
{"title":"严格Δ -模块化ip的进展。","authors":"Martin Nägele, Christian Nöbel, Richard Santiago, Rico Zenklusen","doi":"10.1007/s10107-024-02148-2","DOIUrl":null,"url":null,"abstract":"<p><p>There has been significant work recently on integer programs (IPs) <math><mrow><mo>min</mo> <mo>{</mo> <msup><mi>c</mi> <mi>⊤</mi></msup> <mi>x</mi> <mo>:</mo> <mi>A</mi> <mi>x</mi> <mo>≤</mo> <mi>b</mi> <mo>,</mo> <mspace></mspace> <mi>x</mi> <mo>∈</mo> <msup><mrow><mi>Z</mi></mrow> <mi>n</mi></msup> <mo>}</mo></mrow> </math> with a constraint marix <i>A</i> with bounded subdeterminants. This is motivated by a well-known conjecture claiming that, for any constant <math><mrow><mi>Δ</mi> <mo>∈</mo> <msub><mi>Z</mi> <mrow><mo>></mo> <mn>0</mn></mrow> </msub> </mrow> </math> , <math><mi>Δ</mi></math> -modular IPs are efficiently solvable, which are IPs where the constraint matrix <math><mrow><mi>A</mi> <mo>∈</mo> <msup><mrow><mi>Z</mi></mrow> <mrow><mi>m</mi> <mo>×</mo> <mi>n</mi></mrow> </msup> </mrow> </math> has full column rank and all <math><mrow><mi>n</mi> <mo>×</mo> <mi>n</mi></mrow> </math> minors of <i>A</i> are within <math><mrow><mo>{</mo> <mo>-</mo> <mi>Δ</mi> <mo>,</mo> <mo>⋯</mo> <mo>,</mo> <mi>Δ</mi> <mo>}</mo></mrow> </math> . Previous progress on this question, in particular for <math><mrow><mi>Δ</mi> <mo>=</mo> <mn>2</mn></mrow> </math> , relies on algorithms that solve an important special case, namely <i>strictly</i> <math><mi>Δ</mi></math> -<i>modular IPs</i>, which further restrict the <math><mrow><mi>n</mi> <mo>×</mo> <mi>n</mi></mrow> </math> minors of <i>A</i> to be within <math><mrow><mo>{</mo> <mo>-</mo> <mi>Δ</mi> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mi>Δ</mi> <mo>}</mo></mrow> </math> . Even for <math><mrow><mi>Δ</mi> <mo>=</mo> <mn>2</mn></mrow> </math> , such problems include well-known combinatorial optimization problems like the minimum odd/even cut problem. The conjecture remains open even for strictly <math><mi>Δ</mi></math> -modular IPs. Prior advances were restricted to prime <math><mi>Δ</mi></math> , which allows for employing strong number-theoretic results. In this work, we make first progress beyond the prime case by presenting techniques not relying on such strong number-theoretic prime results. In particular, our approach implies that there is a randomized algorithm to check feasibility of strictly <math><mi>Δ</mi></math> -modular IPs in strongly polynomial time if <math><mrow><mi>Δ</mi> <mo>≤</mo> <mn>4</mn></mrow> </math> .</p>","PeriodicalId":18297,"journal":{"name":"Mathematical Programming","volume":"210 1-2","pages":"731-760"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11870991/pdf/","citationCount":"0","resultStr":"{\"title\":\"<ArticleTitle xmlns:ns0=\\\"http://www.w3.org/1998/Math/MathML\\\">Advances on strictly <ns0:math><ns0:mi>Δ</ns0:mi></ns0:math> -modular IPs.\",\"authors\":\"Martin Nägele, Christian Nöbel, Richard Santiago, Rico Zenklusen\",\"doi\":\"10.1007/s10107-024-02148-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There has been significant work recently on integer programs (IPs) <math><mrow><mo>min</mo> <mo>{</mo> <msup><mi>c</mi> <mi>⊤</mi></msup> <mi>x</mi> <mo>:</mo> <mi>A</mi> <mi>x</mi> <mo>≤</mo> <mi>b</mi> <mo>,</mo> <mspace></mspace> <mi>x</mi> <mo>∈</mo> <msup><mrow><mi>Z</mi></mrow> <mi>n</mi></msup> <mo>}</mo></mrow> </math> with a constraint marix <i>A</i> with bounded subdeterminants. This is motivated by a well-known conjecture claiming that, for any constant <math><mrow><mi>Δ</mi> <mo>∈</mo> <msub><mi>Z</mi> <mrow><mo>></mo> <mn>0</mn></mrow> </msub> </mrow> </math> , <math><mi>Δ</mi></math> -modular IPs are efficiently solvable, which are IPs where the constraint matrix <math><mrow><mi>A</mi> <mo>∈</mo> <msup><mrow><mi>Z</mi></mrow> <mrow><mi>m</mi> <mo>×</mo> <mi>n</mi></mrow> </msup> </mrow> </math> has full column rank and all <math><mrow><mi>n</mi> <mo>×</mo> <mi>n</mi></mrow> </math> minors of <i>A</i> are within <math><mrow><mo>{</mo> <mo>-</mo> <mi>Δ</mi> <mo>,</mo> <mo>⋯</mo> <mo>,</mo> <mi>Δ</mi> <mo>}</mo></mrow> </math> . Previous progress on this question, in particular for <math><mrow><mi>Δ</mi> <mo>=</mo> <mn>2</mn></mrow> </math> , relies on algorithms that solve an important special case, namely <i>strictly</i> <math><mi>Δ</mi></math> -<i>modular IPs</i>, which further restrict the <math><mrow><mi>n</mi> <mo>×</mo> <mi>n</mi></mrow> </math> minors of <i>A</i> to be within <math><mrow><mo>{</mo> <mo>-</mo> <mi>Δ</mi> <mo>,</mo> <mn>0</mn> <mo>,</mo> <mi>Δ</mi> <mo>}</mo></mrow> </math> . Even for <math><mrow><mi>Δ</mi> <mo>=</mo> <mn>2</mn></mrow> </math> , such problems include well-known combinatorial optimization problems like the minimum odd/even cut problem. The conjecture remains open even for strictly <math><mi>Δ</mi></math> -modular IPs. Prior advances were restricted to prime <math><mi>Δ</mi></math> , which allows for employing strong number-theoretic results. In this work, we make first progress beyond the prime case by presenting techniques not relying on such strong number-theoretic prime results. In particular, our approach implies that there is a randomized algorithm to check feasibility of strictly <math><mi>Δ</mi></math> -modular IPs in strongly polynomial time if <math><mrow><mi>Δ</mi> <mo>≤</mo> <mn>4</mn></mrow> </math> .</p>\",\"PeriodicalId\":18297,\"journal\":{\"name\":\"Mathematical Programming\",\"volume\":\"210 1-2\",\"pages\":\"731-760\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11870991/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Programming\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10107-024-02148-2\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Programming","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-024-02148-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
摘要
近年来,对于具有有界子行列式的约束矩阵A的整数规划(ip) min {c∈x: A x≤b, x∈Z n}已经有了大量的研究工作。这是由一个著名的猜想引起的,该猜想声称,对于任何常数Δ∈Z >0, Δ -模ip是有效可解的,这些ip是约束矩阵a∈Z m × n具有满列秩并且a的所有n × n次子都在{- Δ,⋯,Δ}内的ip。先前在这个问题上的进展,特别是对于Δ = 2,依赖于解决一个重要的特殊情况的算法,即严格的Δ -模块化ip,这进一步限制了A的n × n次幂在{- Δ, 0, Δ}内。即使对于Δ = 2,这类问题也包括众所周知的组合优化问题,如最小奇/偶切问题。即使对于严格的Δ -模块化ip,这个猜想仍然是开放的。先前的进展仅限于质数Δ,这允许使用强大的数论结果。在这项工作中,我们通过提出不依赖于如此强大的数论素数结果的技术,在素数情况之外取得了第一个进展。特别是,我们的方法表明,如果Δ≤4,存在一种随机算法来检查严格Δ -模ip在强多项式时间内的可行性。
There has been significant work recently on integer programs (IPs) with a constraint marix A with bounded subdeterminants. This is motivated by a well-known conjecture claiming that, for any constant , -modular IPs are efficiently solvable, which are IPs where the constraint matrix has full column rank and all minors of A are within . Previous progress on this question, in particular for , relies on algorithms that solve an important special case, namely strictly -modular IPs, which further restrict the minors of A to be within . Even for , such problems include well-known combinatorial optimization problems like the minimum odd/even cut problem. The conjecture remains open even for strictly -modular IPs. Prior advances were restricted to prime , which allows for employing strong number-theoretic results. In this work, we make first progress beyond the prime case by presenting techniques not relying on such strong number-theoretic prime results. In particular, our approach implies that there is a randomized algorithm to check feasibility of strictly -modular IPs in strongly polynomial time if .
期刊介绍:
Mathematical Programming publishes original articles dealing with every aspect of mathematical optimization; that is, everything of direct or indirect use concerning the problem of optimizing a function of many variables, often subject to a set of constraints. This involves theoretical and computational issues as well as application studies. Included, along with the standard topics of linear, nonlinear, integer, conic, stochastic and combinatorial optimization, are techniques for formulating and applying mathematical programming models, convex, nonsmooth and variational analysis, the theory of polyhedra, variational inequalities, and control and game theory viewed from the perspective of mathematical programming.