José Antonio Rivas-Navarrete, Humberto Pérez-Espinosa, A L Padilla-Ortiz, Ansel Y Rodríguez-González, Diana Cristina García-Cambero
{"title":"基于音频分析的慢性呼吸系统疾病自动检测边缘计算系统。","authors":"José Antonio Rivas-Navarrete, Humberto Pérez-Espinosa, A L Padilla-Ortiz, Ansel Y Rodríguez-González, Diana Cristina García-Cambero","doi":"10.1007/s10916-025-02154-7","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic respiratory diseases affect people worldwide, but conventional diagnostic methods may not be accessible in remote locations far from population centers. Sounds from the human respiratory system have displayed potential in autonomously detecting these diseases using artificial intelligence (AI). This article outlines the development of an audio-based edge computing system that automatically detects chronic respiratory diseases (CRDs). The system utilizes machine learning (ML) techniques to analyze audio recordings of respiratory sounds (cough and breath) and classify the presence or absence of these diseases, using features such as Mel frequency cepstral coefficients (MFCC) and chromatic attributes (chromagram) to capture the relevant acoustic features of breath sounds. The system was trained and tested using a dataset of respiratory sounds collected from 86 individuals. Among them, 53 had chronic respiratory conditions, including asthma and chronic obstructive pulmonary disease (COPD), while the remaining 33 were healthy. The system's final evaluation was conducted with a group of 13 patients and 22 healthy individuals. Our approach demonstrated high sensitivity and specificity in the classification of sounds on edge devices, including smartphone and Raspberry Pi. Our best results for CRDs reached a sensitivity of 90.0%, a specificity of 93.55%, and a balanced accuracy of 91.75% for accurately identifying individuals with both healthy and diseased. These results showcase the potential of edge computing and machine learning systems in respiratory disease detection. We believe this system can contribute to developing efficient and cost-effective screening tools.</p>","PeriodicalId":16338,"journal":{"name":"Journal of Medical Systems","volume":"49 1","pages":"33"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Edge Computing System for Automatic Detection of Chronic Respiratory Diseases Using Audio Analysis.\",\"authors\":\"José Antonio Rivas-Navarrete, Humberto Pérez-Espinosa, A L Padilla-Ortiz, Ansel Y Rodríguez-González, Diana Cristina García-Cambero\",\"doi\":\"10.1007/s10916-025-02154-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chronic respiratory diseases affect people worldwide, but conventional diagnostic methods may not be accessible in remote locations far from population centers. Sounds from the human respiratory system have displayed potential in autonomously detecting these diseases using artificial intelligence (AI). This article outlines the development of an audio-based edge computing system that automatically detects chronic respiratory diseases (CRDs). The system utilizes machine learning (ML) techniques to analyze audio recordings of respiratory sounds (cough and breath) and classify the presence or absence of these diseases, using features such as Mel frequency cepstral coefficients (MFCC) and chromatic attributes (chromagram) to capture the relevant acoustic features of breath sounds. The system was trained and tested using a dataset of respiratory sounds collected from 86 individuals. Among them, 53 had chronic respiratory conditions, including asthma and chronic obstructive pulmonary disease (COPD), while the remaining 33 were healthy. The system's final evaluation was conducted with a group of 13 patients and 22 healthy individuals. Our approach demonstrated high sensitivity and specificity in the classification of sounds on edge devices, including smartphone and Raspberry Pi. Our best results for CRDs reached a sensitivity of 90.0%, a specificity of 93.55%, and a balanced accuracy of 91.75% for accurately identifying individuals with both healthy and diseased. These results showcase the potential of edge computing and machine learning systems in respiratory disease detection. We believe this system can contribute to developing efficient and cost-effective screening tools.</p>\",\"PeriodicalId\":16338,\"journal\":{\"name\":\"Journal of Medical Systems\",\"volume\":\"49 1\",\"pages\":\"33\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Systems\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10916-025-02154-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10916-025-02154-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Edge Computing System for Automatic Detection of Chronic Respiratory Diseases Using Audio Analysis.
Chronic respiratory diseases affect people worldwide, but conventional diagnostic methods may not be accessible in remote locations far from population centers. Sounds from the human respiratory system have displayed potential in autonomously detecting these diseases using artificial intelligence (AI). This article outlines the development of an audio-based edge computing system that automatically detects chronic respiratory diseases (CRDs). The system utilizes machine learning (ML) techniques to analyze audio recordings of respiratory sounds (cough and breath) and classify the presence or absence of these diseases, using features such as Mel frequency cepstral coefficients (MFCC) and chromatic attributes (chromagram) to capture the relevant acoustic features of breath sounds. The system was trained and tested using a dataset of respiratory sounds collected from 86 individuals. Among them, 53 had chronic respiratory conditions, including asthma and chronic obstructive pulmonary disease (COPD), while the remaining 33 were healthy. The system's final evaluation was conducted with a group of 13 patients and 22 healthy individuals. Our approach demonstrated high sensitivity and specificity in the classification of sounds on edge devices, including smartphone and Raspberry Pi. Our best results for CRDs reached a sensitivity of 90.0%, a specificity of 93.55%, and a balanced accuracy of 91.75% for accurately identifying individuals with both healthy and diseased. These results showcase the potential of edge computing and machine learning systems in respiratory disease detection. We believe this system can contribute to developing efficient and cost-effective screening tools.
期刊介绍:
Journal of Medical Systems provides a forum for the presentation and discussion of the increasingly extensive applications of new systems techniques and methods in hospital clinic and physician''s office administration; pathology radiology and pharmaceutical delivery systems; medical records storage and retrieval; and ancillary patient-support systems. The journal publishes informative articles essays and studies across the entire scale of medical systems from large hospital programs to novel small-scale medical services. Education is an integral part of this amalgamation of sciences and selected articles are published in this area. Since existing medical systems are constantly being modified to fit particular circumstances and to solve specific problems the journal includes a special section devoted to status reports on current installations.