基于信道间相关性的 EMI 噪声消除(ICER),用于无屏蔽低场磁共振成像。

IF 4.4 2区 医学 Q2 ENGINEERING, BIOMEDICAL
Yiman Huang, Shuxian Qu, Yushu Xie, Hanlei Wang, Xinlin Zhang, Xiaotong Zhang
{"title":"基于信道间相关性的 EMI 噪声消除(ICER),用于无屏蔽低场磁共振成像。","authors":"Yiman Huang, Shuxian Qu, Yushu Xie, Hanlei Wang, Xinlin Zhang, Xiaotong Zhang","doi":"10.1109/TBME.2025.3534839","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>For low-field magnetic resonance imaging (MRI) in unshielded environment, existing methods have been proposed to eliminate electromagnetic interference (EMI) noise in each single radio-frequency (RF) receive coil. In the present study, we propose to use the EMI information from multiple MRI receive coils collectively in EMI denoising.</p><p><strong>Methods: </strong>The proposed method leverages the information of inter-channel correlation, including EMI detectors and RF receive coils to remove EMI noise. Calibration signals from both EMI detectors and RF receivers are concatenated to determine a de-correlation matrix, which is then used to denoise MRI signals.</p><p><strong>Results: </strong>Saline phantom and in vivo experiments demonstrated the efficacy of the proposed method in EMI elimination, showing that the proposed method outperformed advanced EMI elimination methods with up to 16.34% improvement in EMI noise removal percentage (NRP) and 1.58dB improvement in signal-to-noise ratio (SNR), along with reduced computational times.</p><p><strong>Conclusion: </strong>The proposed method effectively removes EMI noise and shows improved performance by using information from all receive coils.</p><p><strong>Significance: </strong>This method allows for the design of multi-receive coils for low-field MRI such as phased-arrays, which have the potential to enhance the performance in noise removal and improve the SNR in MRI signal acquisition.</p>","PeriodicalId":13245,"journal":{"name":"IEEE Transactions on Biomedical Engineering","volume":"PP ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inter-Channel Correlation-Based EMI Noise Removal (ICER) for Shielding-Free Low-Field MRI.\",\"authors\":\"Yiman Huang, Shuxian Qu, Yushu Xie, Hanlei Wang, Xinlin Zhang, Xiaotong Zhang\",\"doi\":\"10.1109/TBME.2025.3534839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>For low-field magnetic resonance imaging (MRI) in unshielded environment, existing methods have been proposed to eliminate electromagnetic interference (EMI) noise in each single radio-frequency (RF) receive coil. In the present study, we propose to use the EMI information from multiple MRI receive coils collectively in EMI denoising.</p><p><strong>Methods: </strong>The proposed method leverages the information of inter-channel correlation, including EMI detectors and RF receive coils to remove EMI noise. Calibration signals from both EMI detectors and RF receivers are concatenated to determine a de-correlation matrix, which is then used to denoise MRI signals.</p><p><strong>Results: </strong>Saline phantom and in vivo experiments demonstrated the efficacy of the proposed method in EMI elimination, showing that the proposed method outperformed advanced EMI elimination methods with up to 16.34% improvement in EMI noise removal percentage (NRP) and 1.58dB improvement in signal-to-noise ratio (SNR), along with reduced computational times.</p><p><strong>Conclusion: </strong>The proposed method effectively removes EMI noise and shows improved performance by using information from all receive coils.</p><p><strong>Significance: </strong>This method allows for the design of multi-receive coils for low-field MRI such as phased-arrays, which have the potential to enhance the performance in noise removal and improve the SNR in MRI signal acquisition.</p>\",\"PeriodicalId\":13245,\"journal\":{\"name\":\"IEEE Transactions on Biomedical Engineering\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/TBME.2025.3534839\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/TBME.2025.3534839","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inter-Channel Correlation-Based EMI Noise Removal (ICER) for Shielding-Free Low-Field MRI.

Objective: For low-field magnetic resonance imaging (MRI) in unshielded environment, existing methods have been proposed to eliminate electromagnetic interference (EMI) noise in each single radio-frequency (RF) receive coil. In the present study, we propose to use the EMI information from multiple MRI receive coils collectively in EMI denoising.

Methods: The proposed method leverages the information of inter-channel correlation, including EMI detectors and RF receive coils to remove EMI noise. Calibration signals from both EMI detectors and RF receivers are concatenated to determine a de-correlation matrix, which is then used to denoise MRI signals.

Results: Saline phantom and in vivo experiments demonstrated the efficacy of the proposed method in EMI elimination, showing that the proposed method outperformed advanced EMI elimination methods with up to 16.34% improvement in EMI noise removal percentage (NRP) and 1.58dB improvement in signal-to-noise ratio (SNR), along with reduced computational times.

Conclusion: The proposed method effectively removes EMI noise and shows improved performance by using information from all receive coils.

Significance: This method allows for the design of multi-receive coils for low-field MRI such as phased-arrays, which have the potential to enhance the performance in noise removal and improve the SNR in MRI signal acquisition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Biomedical Engineering
IEEE Transactions on Biomedical Engineering 工程技术-工程:生物医学
CiteScore
9.40
自引率
4.30%
发文量
880
审稿时长
2.5 months
期刊介绍: IEEE Transactions on Biomedical Engineering contains basic and applied papers dealing with biomedical engineering. Papers range from engineering development in methods and techniques with biomedical applications to experimental and clinical investigations with engineering contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信