{"title":"应用机器学习技术研究精神科住院患者下肢深静脉血栓的发生率及危险因素:一项回顾性队列研究","authors":"Liang Xu, Miao Da","doi":"10.2147/CLEP.S501062","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Psychiatric inpatients face an increased risk of deep vein thrombosis (DVT) due to their psychiatric conditions and pharmacological treatments. However, research focusing on this population remains limited.</p><p><strong>Methods: </strong>This study analyzed 17,434 psychiatric inpatients at Huzhou Third Municipal Hospital, incorporating data on demographics, psychiatric diagnoses, physical illnesses, laboratory results, and medication use. Predictive models for DVT were developed using logistic regression, random forest, support vector machine (SVM), and XGBoost (Extreme Gradient Boosting). Feature importance was assessed using the random forest model.</p><p><strong>Results: </strong>The DVT incidence among psychiatric inpatients was 1.6%. Predictive model performance, measured by the area under the curve (AUC), showed logistic regression (0.900), random forest (0.885), SVM (0.890), and XGBoost (0.889) performed well. Logistic regression and random forest models exhibited optimal overall performance, while XGBoost excelled in recall. Significant predictors of DVT included elevated D-dimer levels, age, Alzheimer's disease, and Madopar use.</p><p><strong>Conclusion: </strong>Psychiatric inpatients require vigilance for DVT risk, with factors like D-dimer levels and age serving as critical indicators. Machine learning models effectively predict DVT risk, enabling early detection and personalized prevention strategies in clinical practice.</p>","PeriodicalId":10362,"journal":{"name":"Clinical Epidemiology","volume":"17 ","pages":"197-209"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871911/pdf/","citationCount":"0","resultStr":"{\"title\":\"Incidence and Risk Factors of Lower Limb Deep Vein Thrombosis in Psychiatric Inpatients by Applying Machine Learning to Electronic Health Records: A Retrospective Cohort Study.\",\"authors\":\"Liang Xu, Miao Da\",\"doi\":\"10.2147/CLEP.S501062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Psychiatric inpatients face an increased risk of deep vein thrombosis (DVT) due to their psychiatric conditions and pharmacological treatments. However, research focusing on this population remains limited.</p><p><strong>Methods: </strong>This study analyzed 17,434 psychiatric inpatients at Huzhou Third Municipal Hospital, incorporating data on demographics, psychiatric diagnoses, physical illnesses, laboratory results, and medication use. Predictive models for DVT were developed using logistic regression, random forest, support vector machine (SVM), and XGBoost (Extreme Gradient Boosting). Feature importance was assessed using the random forest model.</p><p><strong>Results: </strong>The DVT incidence among psychiatric inpatients was 1.6%. Predictive model performance, measured by the area under the curve (AUC), showed logistic regression (0.900), random forest (0.885), SVM (0.890), and XGBoost (0.889) performed well. Logistic regression and random forest models exhibited optimal overall performance, while XGBoost excelled in recall. Significant predictors of DVT included elevated D-dimer levels, age, Alzheimer's disease, and Madopar use.</p><p><strong>Conclusion: </strong>Psychiatric inpatients require vigilance for DVT risk, with factors like D-dimer levels and age serving as critical indicators. Machine learning models effectively predict DVT risk, enabling early detection and personalized prevention strategies in clinical practice.</p>\",\"PeriodicalId\":10362,\"journal\":{\"name\":\"Clinical Epidemiology\",\"volume\":\"17 \",\"pages\":\"197-209\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11871911/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Epidemiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/CLEP.S501062\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/CLEP.S501062","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Incidence and Risk Factors of Lower Limb Deep Vein Thrombosis in Psychiatric Inpatients by Applying Machine Learning to Electronic Health Records: A Retrospective Cohort Study.
Background: Psychiatric inpatients face an increased risk of deep vein thrombosis (DVT) due to their psychiatric conditions and pharmacological treatments. However, research focusing on this population remains limited.
Methods: This study analyzed 17,434 psychiatric inpatients at Huzhou Third Municipal Hospital, incorporating data on demographics, psychiatric diagnoses, physical illnesses, laboratory results, and medication use. Predictive models for DVT were developed using logistic regression, random forest, support vector machine (SVM), and XGBoost (Extreme Gradient Boosting). Feature importance was assessed using the random forest model.
Results: The DVT incidence among psychiatric inpatients was 1.6%. Predictive model performance, measured by the area under the curve (AUC), showed logistic regression (0.900), random forest (0.885), SVM (0.890), and XGBoost (0.889) performed well. Logistic regression and random forest models exhibited optimal overall performance, while XGBoost excelled in recall. Significant predictors of DVT included elevated D-dimer levels, age, Alzheimer's disease, and Madopar use.
Conclusion: Psychiatric inpatients require vigilance for DVT risk, with factors like D-dimer levels and age serving as critical indicators. Machine learning models effectively predict DVT risk, enabling early detection and personalized prevention strategies in clinical practice.
期刊介绍:
Clinical Epidemiology is an international, peer reviewed, open access journal. Clinical Epidemiology focuses on the application of epidemiological principles and questions relating to patients and clinical care in terms of prevention, diagnosis, prognosis, and treatment.
Clinical Epidemiology welcomes papers covering these topics in form of original research and systematic reviews.
Clinical Epidemiology has a special interest in international electronic medical patient records and other routine health care data, especially as applied to safety of medical interventions, clinical utility of diagnostic procedures, understanding short- and long-term clinical course of diseases, clinical epidemiological and biostatistical methods, and systematic reviews.
When considering submission of a paper utilizing publicly-available data, authors should ensure that such studies add significantly to the body of knowledge and that they use appropriate validated methods for identifying health outcomes.
The journal has launched special series describing existing data sources for clinical epidemiology, international health care systems and validation studies of algorithms based on databases and registries.