视觉质量控制与细胞,一个生物导体包为细胞术样品距离的低维表示。

IF 2.5 4区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS
Philippe Hauchamps, Simon Delandre, Stéphane T. Temmerman, Dan Lin, Laurent Gatto
{"title":"视觉质量控制与细胞,一个生物导体包为细胞术样品距离的低维表示。","authors":"Philippe Hauchamps,&nbsp;Simon Delandre,&nbsp;Stéphane T. Temmerman,&nbsp;Dan Lin,&nbsp;Laurent Gatto","doi":"10.1002/cyto.a.24921","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Quality Control (QC) of samples is an essential preliminary step in cytometry data analysis. Notably, the identification of potential batch effects and outlying samples is paramount to avoid mistaking these effects for true biological signals in downstream analyses. However, this task can prove to be delicate and tedious, especially for datasets with dozens of samples. Here, we present <i>CytoMDS</i>, a Bioconductor package implementing a dedicated method for low-dimensional representation of cytometry samples composed of marker expressions for up to millions of single cells. This method allows a global representation of all samples of a study, with one single point per sample, in such a way that projected distances can be visually interpreted. <i>CytoMDS</i> uses <i>Earth Mover's Distance</i> for assessing dissimilarities between multi-dimensional distributions of marker expression and <i>Multi-Dimensional Scaling</i> for low-dimensional projection of distances. Some additional visualization tools, both for projection quality diagnosis and for user interpretation of the projection coordinates, are also provided in the package. We demonstrate the strengths and advantages of <i>CytoMDS</i> for QC of cytometry data on three real biological datasets, revealing the presence of low-quality samples, batch effects, and biological signal between sample groups.</p>\n </div>","PeriodicalId":11068,"journal":{"name":"Cytometry Part A","volume":"107 3","pages":"177-186"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visual Quality Control With CytoMDS, a Bioconductor Package for Low Dimensional Representation of Cytometry Sample Distances\",\"authors\":\"Philippe Hauchamps,&nbsp;Simon Delandre,&nbsp;Stéphane T. Temmerman,&nbsp;Dan Lin,&nbsp;Laurent Gatto\",\"doi\":\"10.1002/cyto.a.24921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Quality Control (QC) of samples is an essential preliminary step in cytometry data analysis. Notably, the identification of potential batch effects and outlying samples is paramount to avoid mistaking these effects for true biological signals in downstream analyses. However, this task can prove to be delicate and tedious, especially for datasets with dozens of samples. Here, we present <i>CytoMDS</i>, a Bioconductor package implementing a dedicated method for low-dimensional representation of cytometry samples composed of marker expressions for up to millions of single cells. This method allows a global representation of all samples of a study, with one single point per sample, in such a way that projected distances can be visually interpreted. <i>CytoMDS</i> uses <i>Earth Mover's Distance</i> for assessing dissimilarities between multi-dimensional distributions of marker expression and <i>Multi-Dimensional Scaling</i> for low-dimensional projection of distances. Some additional visualization tools, both for projection quality diagnosis and for user interpretation of the projection coordinates, are also provided in the package. We demonstrate the strengths and advantages of <i>CytoMDS</i> for QC of cytometry data on three real biological datasets, revealing the presence of low-quality samples, batch effects, and biological signal between sample groups.</p>\\n </div>\",\"PeriodicalId\":11068,\"journal\":{\"name\":\"Cytometry Part A\",\"volume\":\"107 3\",\"pages\":\"177-186\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytometry Part A\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cyto.a.24921\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytometry Part A","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cyto.a.24921","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

样品的质量控制(QC)是细胞术数据分析中必不可少的第一步。值得注意的是,识别潜在的批效应和外围样品对于避免在下游分析中将这些效应误认为真正的生物信号至关重要。然而,这项任务可能被证明是微妙而乏味的,特别是对于具有数十个样本的数据集。在这里,我们提出了一个Bioconductor包,实现了一种专门的方法,用于由多达数百万个单细胞的标记表达组成的细胞测定样品的低维表示。这种方法允许对研究的所有样本进行全局表示,每个样本只有一个点,这样就可以直观地解释投影距离。流式细胞术使用Earth Mover’s Distance来评估标记物表达的多维分布和多维尺度(multi-dimensional Scaling)对距离的低维投影之间的差异。包中还提供了一些额外的可视化工具,用于投影质量诊断和用户对投影坐标的解释。我们在三个真实的生物数据集上展示了流式细胞仪在细胞数据质量控制方面的优势和优势,揭示了低质量样品、批处理效应和样品组之间的生物信号的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual Quality Control With CytoMDS, a Bioconductor Package for Low Dimensional Representation of Cytometry Sample Distances

Quality Control (QC) of samples is an essential preliminary step in cytometry data analysis. Notably, the identification of potential batch effects and outlying samples is paramount to avoid mistaking these effects for true biological signals in downstream analyses. However, this task can prove to be delicate and tedious, especially for datasets with dozens of samples. Here, we present CytoMDS, a Bioconductor package implementing a dedicated method for low-dimensional representation of cytometry samples composed of marker expressions for up to millions of single cells. This method allows a global representation of all samples of a study, with one single point per sample, in such a way that projected distances can be visually interpreted. CytoMDS uses Earth Mover's Distance for assessing dissimilarities between multi-dimensional distributions of marker expression and Multi-Dimensional Scaling for low-dimensional projection of distances. Some additional visualization tools, both for projection quality diagnosis and for user interpretation of the projection coordinates, are also provided in the package. We demonstrate the strengths and advantages of CytoMDS for QC of cytometry data on three real biological datasets, revealing the presence of low-quality samples, batch effects, and biological signal between sample groups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cytometry Part A
Cytometry Part A 生物-生化研究方法
CiteScore
8.10
自引率
13.50%
发文量
183
审稿时长
4-8 weeks
期刊介绍: Cytometry Part A, the journal of quantitative single-cell analysis, features original research reports and reviews of innovative scientific studies employing quantitative single-cell measurement, separation, manipulation, and modeling techniques, as well as original articles on mechanisms of molecular and cellular functions obtained by cytometry techniques. The journal welcomes submissions from multiple research fields that fully embrace the study of the cytome: Biomedical Instrumentation Engineering Biophotonics Bioinformatics Cell Biology Computational Biology Data Science Immunology Parasitology Microbiology Neuroscience Cancer Stem Cells Tissue Regeneration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信