{"title":"数据不平衡和缺失情况下窃电检测的自监督潜在特征引导多步扩散模型","authors":"Honggang Yang;Cheng Lian;Bingrong Xu;Ruijin Ding;Pengbo Zhao;Zhigang Zeng","doi":"10.1109/TSG.2025.3546219","DOIUrl":null,"url":null,"abstract":"The widespread adoption of advanced metering infrastructure has provided abundant data, enabling the integration of deep learning techniques into smart grids. However, it has also led to more sophisticated and concealed methods of electricity theft. Due to the challenges posed by data imbalance and missing values caused by device malfunctions and communication issues, existing deep learning models often perform poorly. To address these issues, this paper proposes a multi-step training framework named DING, which incorporates diffusion generation, self-supervised pre-training, normalized condition imputation, and generation-balanced fine-tuning. First, sufficient balanced smart meter data is generated using a diffusion model. Second, a pre-trained encoder is trained on the generated data, extracting unbiased low-dimensional features that can be used for downstream classification tasks and as conditions to guide the training of the imputation model. Next, an imputation model is trained based on a diffusion state-space equation. Finally, fine-tuning is performed on the balanced data. Experiments on a real dataset from the State Grid Corporation of China demonstrate that the proposed method outperforms previous models for both electricity theft detection and imputation tasks.","PeriodicalId":13331,"journal":{"name":"IEEE Transactions on Smart Grid","volume":"16 3","pages":"2439-2450"},"PeriodicalIF":8.6000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-Supervised Latent Feature-Guided Multi-Step Diffusion Model for Electricity Theft Detection With Imbalanced and Missing Data\",\"authors\":\"Honggang Yang;Cheng Lian;Bingrong Xu;Ruijin Ding;Pengbo Zhao;Zhigang Zeng\",\"doi\":\"10.1109/TSG.2025.3546219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The widespread adoption of advanced metering infrastructure has provided abundant data, enabling the integration of deep learning techniques into smart grids. However, it has also led to more sophisticated and concealed methods of electricity theft. Due to the challenges posed by data imbalance and missing values caused by device malfunctions and communication issues, existing deep learning models often perform poorly. To address these issues, this paper proposes a multi-step training framework named DING, which incorporates diffusion generation, self-supervised pre-training, normalized condition imputation, and generation-balanced fine-tuning. First, sufficient balanced smart meter data is generated using a diffusion model. Second, a pre-trained encoder is trained on the generated data, extracting unbiased low-dimensional features that can be used for downstream classification tasks and as conditions to guide the training of the imputation model. Next, an imputation model is trained based on a diffusion state-space equation. Finally, fine-tuning is performed on the balanced data. Experiments on a real dataset from the State Grid Corporation of China demonstrate that the proposed method outperforms previous models for both electricity theft detection and imputation tasks.\",\"PeriodicalId\":13331,\"journal\":{\"name\":\"IEEE Transactions on Smart Grid\",\"volume\":\"16 3\",\"pages\":\"2439-2450\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Smart Grid\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10908697/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Smart Grid","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10908697/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Self-Supervised Latent Feature-Guided Multi-Step Diffusion Model for Electricity Theft Detection With Imbalanced and Missing Data
The widespread adoption of advanced metering infrastructure has provided abundant data, enabling the integration of deep learning techniques into smart grids. However, it has also led to more sophisticated and concealed methods of electricity theft. Due to the challenges posed by data imbalance and missing values caused by device malfunctions and communication issues, existing deep learning models often perform poorly. To address these issues, this paper proposes a multi-step training framework named DING, which incorporates diffusion generation, self-supervised pre-training, normalized condition imputation, and generation-balanced fine-tuning. First, sufficient balanced smart meter data is generated using a diffusion model. Second, a pre-trained encoder is trained on the generated data, extracting unbiased low-dimensional features that can be used for downstream classification tasks and as conditions to guide the training of the imputation model. Next, an imputation model is trained based on a diffusion state-space equation. Finally, fine-tuning is performed on the balanced data. Experiments on a real dataset from the State Grid Corporation of China demonstrate that the proposed method outperforms previous models for both electricity theft detection and imputation tasks.
期刊介绍:
The IEEE Transactions on Smart Grid is a multidisciplinary journal that focuses on research and development in the field of smart grid technology. It covers various aspects of the smart grid, including energy networks, prosumers (consumers who also produce energy), electric transportation, distributed energy resources, and communications. The journal also addresses the integration of microgrids and active distribution networks with transmission systems. It publishes original research on smart grid theories and principles, including technologies and systems for demand response, Advance Metering Infrastructure, cyber-physical systems, multi-energy systems, transactive energy, data analytics, and electric vehicle integration. Additionally, the journal considers surveys of existing work on the smart grid that propose new perspectives on the history and future of intelligent and active grids.