负Kähler-Einstein指标的连续尖峰关闭过程

IF 2.4 1区 数学 Q1 MATHEMATICS
Xin Fu, Hans-Joachim Hein, Xumin Jiang
{"title":"负Kähler-Einstein指标的连续尖峰关闭过程","authors":"Xin Fu, Hans-Joachim Hein, Xumin Jiang","doi":"10.1007/s00039-025-00708-y","DOIUrl":null,"url":null,"abstract":"<p>We give an example of a family of smooth complex algebraic surfaces of degree 6 in <span>\\(\\mathbb{CP}^{3}\\)</span> developing an isolated elliptic singularity. We show via a gluing construction that the unique Kähler-Einstein metrics of Ricci curvature −1 on these sextics develop a complex hyperbolic cusp in the limit, and that near the tip of the forming cusp a Tian-Yau gravitational instanton bubbles off.</p>","PeriodicalId":12478,"journal":{"name":"Geometric and Functional Analysis","volume":"2 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Continuous Cusp Closing Process for Negative Kähler-Einstein Metrics\",\"authors\":\"Xin Fu, Hans-Joachim Hein, Xumin Jiang\",\"doi\":\"10.1007/s00039-025-00708-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give an example of a family of smooth complex algebraic surfaces of degree 6 in <span>\\\\(\\\\mathbb{CP}^{3}\\\\)</span> developing an isolated elliptic singularity. We show via a gluing construction that the unique Kähler-Einstein metrics of Ricci curvature −1 on these sextics develop a complex hyperbolic cusp in the limit, and that near the tip of the forming cusp a Tian-Yau gravitational instanton bubbles off.</p>\",\"PeriodicalId\":12478,\"journal\":{\"name\":\"Geometric and Functional Analysis\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometric and Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00039-025-00708-y\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometric and Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00039-025-00708-y","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了在\(\mathbb{CP}^{3}\)上的一类6次光滑复代数曲面发展孤立椭圆奇点的例子。我们通过粘接构造证明了这些结构上Ricci曲率- 1的独特Kähler-Einstein度量在极限处形成一个复杂的双曲尖峰,并且在形成尖峰的尖端附近产生了一个天丘引力瞬子气泡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Continuous Cusp Closing Process for Negative Kähler-Einstein Metrics

We give an example of a family of smooth complex algebraic surfaces of degree 6 in \(\mathbb{CP}^{3}\) developing an isolated elliptic singularity. We show via a gluing construction that the unique Kähler-Einstein metrics of Ricci curvature −1 on these sextics develop a complex hyperbolic cusp in the limit, and that near the tip of the forming cusp a Tian-Yau gravitational instanton bubbles off.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
4.50%
发文量
34
审稿时长
6-12 weeks
期刊介绍: Geometric And Functional Analysis (GAFA) publishes original research papers of the highest quality on a broad range of mathematical topics related to geometry and analysis. GAFA scored in Scopus as best journal in "Geometry and Topology" since 2014 and as best journal in "Analysis" since 2016. Publishes major results on topics in geometry and analysis. Features papers which make connections between relevant fields and their applications to other areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信