{"title":"无创迷走神经电刺激用于败血症治疗中的免疫调节","authors":"Cam-Hoa Mac, Giang Le Thi Nguyen, Dien Thi My Nguyen, Sheng-Min Huang, Hsu-Hsia Peng, Yen Chang, Shih-Kai Lo, Hui-Hua Kenny Chiang, Yuan-Zhen Yang, Hsiang-Lin Song, Wei-Tso Chia, Yu-Jung Lin, Hsing-Wen Sung","doi":"10.1021/jacs.4c16367","DOIUrl":null,"url":null,"abstract":"Sepsis presents a significant medical challenge due to its intense inflammatory response to infection, often resulting in high mortality rates. A promising therapeutic strategy targets the cholinergic anti-inflammatory pathway (CAIP), which regulates immune responses. This study investigates the ingestion of piezoelectric particles that adhere to the stomach lining, specifically targeting TRPV1 receptors. In a mouse model of sepsis, these particles, when activated by low-intensity pulsed ultrasound, generate mild electrical pulses. These pulses stimulate vagal afferent fibers, transmitting signals to the brain and modulating the neural-immune network via the CAIP. Consequently, this leads to a reduction in systemic inflammation, mitigating weight loss, alleviating multiple tissue injuries, and preventing death by modulating immune cells in the spleen. This approach addresses the critical need for noninvasive sepsis therapies, potentially improving patient outcomes. Utilizing portable ultrasound equipment with minimal thermal effects, this technique offers a safe and convenient treatment option, even for home use.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"1 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noninvasive Vagus Nerve Electrical Stimulation for Immune Modulation in Sepsis Therapy\",\"authors\":\"Cam-Hoa Mac, Giang Le Thi Nguyen, Dien Thi My Nguyen, Sheng-Min Huang, Hsu-Hsia Peng, Yen Chang, Shih-Kai Lo, Hui-Hua Kenny Chiang, Yuan-Zhen Yang, Hsiang-Lin Song, Wei-Tso Chia, Yu-Jung Lin, Hsing-Wen Sung\",\"doi\":\"10.1021/jacs.4c16367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sepsis presents a significant medical challenge due to its intense inflammatory response to infection, often resulting in high mortality rates. A promising therapeutic strategy targets the cholinergic anti-inflammatory pathway (CAIP), which regulates immune responses. This study investigates the ingestion of piezoelectric particles that adhere to the stomach lining, specifically targeting TRPV1 receptors. In a mouse model of sepsis, these particles, when activated by low-intensity pulsed ultrasound, generate mild electrical pulses. These pulses stimulate vagal afferent fibers, transmitting signals to the brain and modulating the neural-immune network via the CAIP. Consequently, this leads to a reduction in systemic inflammation, mitigating weight loss, alleviating multiple tissue injuries, and preventing death by modulating immune cells in the spleen. This approach addresses the critical need for noninvasive sepsis therapies, potentially improving patient outcomes. Utilizing portable ultrasound equipment with minimal thermal effects, this technique offers a safe and convenient treatment option, even for home use.\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.4c16367\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c16367","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Noninvasive Vagus Nerve Electrical Stimulation for Immune Modulation in Sepsis Therapy
Sepsis presents a significant medical challenge due to its intense inflammatory response to infection, often resulting in high mortality rates. A promising therapeutic strategy targets the cholinergic anti-inflammatory pathway (CAIP), which regulates immune responses. This study investigates the ingestion of piezoelectric particles that adhere to the stomach lining, specifically targeting TRPV1 receptors. In a mouse model of sepsis, these particles, when activated by low-intensity pulsed ultrasound, generate mild electrical pulses. These pulses stimulate vagal afferent fibers, transmitting signals to the brain and modulating the neural-immune network via the CAIP. Consequently, this leads to a reduction in systemic inflammation, mitigating weight loss, alleviating multiple tissue injuries, and preventing death by modulating immune cells in the spleen. This approach addresses the critical need for noninvasive sepsis therapies, potentially improving patient outcomes. Utilizing portable ultrasound equipment with minimal thermal effects, this technique offers a safe and convenient treatment option, even for home use.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.